

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

CONTENIDO

3	CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO	12
3.2	MEDIO ABIÓTICO	12
3.2.4	Hidrología	12
3.2.4.1	Localización hidrográfica	12
3.2.4.2	Inventario de cuerpos de agua superficial	14
3.2.4.3	Cuencas presentes en el área de influencia fisicobiótica	58
3.2.4.4	Patrones y redes de drenaje	95
3.2.4.5	Delimitación de las zonas de recarga en las cuencas hidrográficas1	04
	Características morfométricas de las cuencas en el área de influenc ótica1	
3.2.4.7	Clasificación hidrológica de las corrientes según su temporalidad1	18
3.2.4.8	Análisis estadístico de información hidroclimatológica1	20
3.2.4.9	Balance hídrico de largo plazo1	37
3.2.4.10	Régimen hidrológico de caudales medios1	51
3.2.4.11	Curva de duración de caudales1	66
3.2.4.12	Caudales extremos de las corrientes en el área de influencia fisicobiótic 169	Ca
3.2.4.13	Análisis multitemporal de la dinámica fluvial1	71
3.2.4.14	Susceptibilidad a la inundación1	74

Versión No. 1. 07.2022

3.2.4.15 Indicadores hidroclimatológicos	181
<u> </u>	
3.2.4.16 Posibles fuentes de contaminación	196

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

LISTA DE TABLAS

Tabla 3.2.4-1 Localización hidrográfica del área de estudio	13
Tabla 3.2.4-2 Puntos de reconocimiento de cuerpos de agua lénticos y lóticos	14
Tabla 3.2.4-3 Clasificación de las cuencas en el área de estudio	59
Tabla 3.2.4-4 Clasificación del tipo de drenaje	96
Tabla 3.2.4-5 Zonas de recarga en las cuencas hidrográficas	104
Tabla 3.2.4-6 Parámetros generales de las unidades hidrográficas	107
Tabla 3.2.4-7 Tabla clasificaciones factor de forma	109
Tabla 3.2.4-8 Factor de Forma	109
Tabla 3.2.4-9 Tabla clasificaciones Coeficiente de Compacidad	
Tabla 3.2.4-10 Coeficiente de compacidad	111
Tabla 3.2.4-11 Tabla clasificaciones Indice de Alargamiento	
Tabla 3.2.4-12 Índice de Alargamiento	114
Tabla 3.2.4-13 Densidad de drenaje	115
Tabla 3.2.4-14 Pendientes en el área de estudio	117
Tabla 3.2.4-15 Periodo de tiempo con información de las estaciones precipitación diaria	
Tabla 3.2.4-16 Periodo de tiempo con información de las estaciones de caud nivel mensual	
Tabla 3.2.4-17 Proporción de datos faltantes de estaciones de precipitación	122
Tabla 3.2.4-18 Proporción de datos faltantes de estaciones de caudal y nivel	122
Tabla 3.2.4-19 Resultados pruebas Mann-Kendall para precipitación	125
Tabla 3.2.4-20 Resultados pruebas Mann-Kendall para caudal	125
Tabla 3.2.4-21 Correlación lineal entre las series de análisis y el SOI	131
Tabla 3.2.4-22 Estadísticos básicos de las series hidroclimatológicas	133
Tabla 3.2.4-23 Proporción de representación de las estaciones de precipitad sobre las unidades hidrográficas	
Tabla 3.2.4-24 Precipitación representativa de las unidades hidrográficas en el á de influencia.	
Tabla 3.2.4-25 Régimen mensual de la evapotranspiración potencial y real estac Candelaria (1991 – 2017)	

Versión No. 1. 07.2022

Tabla 3.2.4-26 Balance hídrico de largo plazo (1991 – 2017)	149
Tabla 3.2.4-27 Paquetes Usados	155
Tabla 3.2.4-28 Parámetros de entrada para cuenca	156
Tabla 3.2.4-29 Descripción del proyecto para cada cuenca	159
Tabla 3.2.4-30 Resultados iniciales arrojados por el modelo Subcuenca Afluente al Embalse el Guájaro.	
Tabla 3.2.4-31 Resultados calibrados para la Subcuenca Afluente NN al Embalse Guájaro.	
Tabla 3.2.4-32 Caudales medios simulados y calibrados para las subcuencas er área de influencia	
Tabla 3.2.4-33 Ejemplo cálculos Curva Duración de Caudal	167
Tabla 3.2.4-34 Caudales característicos en la subcuenca Afluente NN al Embalse Guájaro	
Tabla 3.2.4-35. Pruebas de bondad y ajuste Subcuenca Afluente NN al Embalse Guájaro	
Tabla 3.2.4-36. Caudales extremos Subcuenca Afluente NN al Embalse el Guájo	
Tabla 3.2.4-37 Susceptibilidad a la inundación coberturas	
Tabla 3.2.4-38 Susceptibilidad a la inundación geomorfología	177
Tabla 3.2.4-39 Tabla Resumen de criterios de delimitación de susceptibilidad cinundación	
Tabla 3.2.4-40 Rangos de clasificación del índice de aridez (IA)	182
Tabla 3.2.4-41 Índice de aridez (IA) de las unidades hidrográficas en el Al	182
Tabla 3.2.4-42 Rangos de clasificación del índice de retención y regulación hídr (IRH)	
Tabla 3.2.4-43 Índice de retención y regulación hídrica de las unidad hidrográficas del Al	
Tabla 3.2.4-44 Clasificación del IUA	190
Tabla 3.2.4-45 Valores de referencia de la demanda hídrica	191
Tabla 3.2.4-46 Índice de uso del agua (IUA) de las unidades hidrográficas del Al	192
Tabla 3.2.4-47 Clasificación del IVH	194

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

LISTA DE FIGURAS

Figura 3.2.4-1 Localización área de estudio en la zonificación hidrográfica Colombia	
Figura 3.2.4-2 Sistemas lénticos identificados en el área de influencia fisicobiót Ventana 1	
Figura 3.2.4-3 Sistemas lénticos identificados en el área de influencia fisicobiót Ventana 2	
Figura 3.2.4-4 Sistemas lénticos identificados en el área de influencia fisicobiót Ventana 3	
Figura 3.2.4-5 Sistemas lénticos identificados en el área de influencia fisicobiót Ventana 4	
Figura 3.2.4-6 Sistemas lénticos identificados en el área de influencia fisicobiót Ventana 5	
Figura 3.2.4-7 Sistemas lénticos identificados en el área de influencia fisicobiót Ventana 6	
Figura 3.2.4-8 Sistemas lénticos identificados en el área de influencia fisicobiót Ventana 7	
Figura 3.2.4-9 Sistemas lénticos identificados en el área de influencia fisicobiót Ventana 8	
Figura 3.2.4-10 Red hidrográfica en el área de influencia fisicobiótica	35
Figura 3.2.4-11 Arroyo Las Piedras	41
Figura 3.2.4-12 Subzona hidrográfica asociada al proyecto	61
Figura 3.2.4-13 Subcuencas hidrográficas asociadas al proyecto	62
Figura 3.2.4-14 Subcuenca Espejo de gua Embalse El Guájaro	63
Figura 3.2.4-15 Subcuenca Afluente NN al Embalse El Guájaro	64
Figura 3.2.4-16 Subcuenca Afluente NN1 al Embalse El Guájaro	65
Figura 3.2.4-17 Subcuenca Afluente NN2 al Embalse El Guájaro	66
Figura 3.2.4-18 Subcuenca Afluente NN3 al Embalse El Guájaro	67
Figura 3.2.4-19 Subcuenca Arroyo El Salado	68
Figura 3.2.4-20 Subcuenca Arroyo la Peña	69
Figura 3.2.4-21 Subcuenca Arroyo Mendoza	70
Figura 3.2.4-22 Subcuenca Arroyo Molinero	71

Versión No. 1. 07.2022

Figura	3.2.4-23 Subcuenca Arroyo Platanal	72
Figura	3.2.4-24 Subcuenca Arroyo Regolledo 1	73
Figura	3.2.4-25 Subcuenca Arroyo Regolledo 2	74
Figura	3.2.4-26 Subcuenca Arroyo Rico	75
Figura	3.2.4-27 Subcuenca Arroyo Salado	76
Figura	3.2.4-28 Subcuenca Directos al embalse El Guájaro	77
Figura	3.2.4-29 Subcuenca Arroyo Malavet	78
Figura	3.2.4-30 Subcuenca Arroyo NN4	79
Figura	3.2.4-31 Subcuenca Arroyo NN5	30
Figura	3.2.4-32 Subcuenca Arroyo Pantano	31
Figura	3.2.4-33 Subcuenca Arroyo Barro	32
Figura	3.2.4-34 Subcuenca Arroyo Bejuco	33
Figura	3.2.4-35 Subcuenca Arroyo de las Piedras	34
Figura	3.2.4-36 Subcuenca Arroyo Gallego	35
Figura	3.2.4-37 Subcuenca Arroyo Grande	36
Figura	3.2.4-38 Subcuenca Arroyo Guanábano	37
Figura	3.2.4-39 Subcuenca Arroyo Guayepo	38
Figura	3.2.4-40 Subcuenca Arroyo Leña	39
Figura	3.2.4-41 Subcuenca Arroyo Manga	90
Figura	3.2.4-42 Subcuenca Arroyo NN	71
Figura	3.2.4-43 Subcuenca Arroyo NN1	72
Figura	3.2.4-44 Subcuenca Arroyo NN3	73
Figura	3.2.4-45 Subcuenca Arroyo Orijata	94
Figura	3.2.4-46 Subcuenca Directos al Río Magdalena	75
Figura	3.2.4-47 Pendientes en el área de estudio	17
Figura	3.2.4-48 Precipitación diaria en la estación Usiacurí (1991 – 2020)12	23
Figura	3.2.4-49 Caudal diario en la estación Calamar (1991 – 2020)12	24
	3.2.4-50 Diagrama de cajas y bigotes precipitación estación Normal Mana mática (1991 – 2020)12	

Versión No. 1. 07.2022

Figura 3.2.4-51 Diagrama de cajas y bigotes caudal estación Calamar (1991 – 2020)
Figura 3.2.4-52 Correlograma lineal entre la precipitación mensual en la estación Los Campanos y el índice SOI (1991 – 2020)
Figura 3.2.4-53 Correlograma lineal entre la precipitación mensual en la estación Campanos Los y el índice SOI (1991 – 2020)
Figura 3.2.4-54 Régimen de precipitación mensual estaciones de análisis 135
Figura 3.2.4-55 Régimen de precipitación mensual estación de análisis136
Figura 3.2.4-56 Polígonos de Thiessen sobre las cuencas hidrográficas del área de influencia
Figura 3.2.4-57 Isoyetas (1990 – 2020)
Figura 3.2.4-58 Régimen mensual de la evapotranspiración potencial y real estación Candelaria (1991 – 2017)
Figura 3.2.4-59 Variación espacial de la evapotranspiración real149
Figura 3.2.4-60 Esquema modelo HEC HMS - SMA
Figura 3.2.4-61 Esquema modelo HEC HMS cuenca Arroyo Las Piedras153
Figura 3.2.4-62 Serie diaria ETP para modelación continua en HEC HMS zona de estudio
Figura 3.2.4-63 Hidrograma generado de la modelación hidrológica de la Subcuenca Afluente NN al Embalse el Guájaro
Figura 3.2.4-64 Régimen de caudales del río Magdalena estación Calamar 166
Figura 3.2.4-65 Curva de Duración de caudales Subcuenca Afluente NN al Embalse el Guájaro
Figura 3.2.4-66 Imagen Satelital Embalse el Guájaro Fenómeno Niña (2010-2011)
Figura 3.2.4-67 Imagen Satelital Embalse el Guájaro Fenómeno Niño (2014-2016)
Figura 3.2.4-68 Imagen Satelital Río Magdalena Fenómeno Niña (2010-2011)173
Figura 3.2.4-69 Imagen Satelital Río Magdalena Fenómeno Niño (2014-2016) 173
Figura 3.2.4-70 Imagen Satelital OC8 Fenómeno Niña (2010-2011) ¡Error! Marcador no definido.
Figura 3.2.4-71 Imagen Satelital OC8Fenómeno Niño (2014-2016); Error! Marcador no definido.

Versión No. 1. 07.2022

3.2.4-72 Imagen Satelital OC15 Fenómeno Niña (2010-2011)¡Error! nido.	Marcador
3.2.4-73 Imagen Satelital OC15 Fenómeno Niño (2014-2016)¡Error! nido.	Marcador
3.2.4-74 Imagen Satelital OC27 Fenómeno Niña (2010-2011)¡Error! nido.	Marcador
3.2.4-75 Imagen Satelital OC27 Fenómeno Niño (2014-2016)¡Error! nido.	Marcador
3.2.4-76 Metodología para la generación del mapa de susceptib	
3.2.4-77 Distribución espacial de la susceptibilidad a la inundación	n181
3.2.4-78 CDC cuenca arroyo Pantano (1991 – 2017)	186
3.2.4-79 CDC río Magdalena estación Calamar (1991 – 2020)	187
	nido. 3.2.4-73 Imagen Satelital OC15 Fenómeno Niño (2014-2016)¡Error! nido. 3.2.4-74 Imagen Satelital OC27 Fenómeno Niña (2010-2011)¡Error! nido. 3.2.4-75 Imagen Satelital OC27 Fenómeno Niño (2014-2016)¡Error! nido. 3.2.4-76 Metodología para la generación del mapa de susceptiboción

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

LISTA DE FOTOGRAFÍAS

Fotografía 3.2.4-1 Embalse el Guájaro en vereda La Peña	27
Fotografía 3.2.4-2 Río Magdalena	36
Fotografía 3.2.4-3 Canal de Dique en compuertas Porvenir	37
Fotografía 3.2.4-4 Arroyo Barro (arroyo Mono)	38
Fotografía 3.2.4-5 Arroyo Bejuco	39
Fotografía 3.2.4-6 Arroyo El Salado	40
Fotografía 3.2.4-7 Arroyo Gallego	42
Fotografía 3.2.4-8 Arroyo Grande	43
Fotografía 3.2.4-9 Arroyo Guanábano	44
Fotografía 3.2.4-10 Arroyo Guayepo	45
Fotografía 3.2.4-11 Arroyo La Peña	46
Fotografía 3.2.4-12 Arroyo Leña	47
Fotografía 3.2.4-13 Arroyo Malavet	48
Fotografía 3.2.4-14 Arroyo Manga	49
Fotografía 3.2.4-15 Arroyo Mendoza	50
Fotografía 3.2.4-16 Arroyo Molinero	51
Fotografía 3.2.4-17 Arroyo Orijata	52
Fotografía 3.2.4-18 Arroyo Pantano	53
Fotografía 3.2.4-19 Arroyo Platanal	54
Fotografía 3.2.4-20 Arroyo Regolledo 1	55
Fotografía 3.2.4-21 Arroyo Regolledo 2	56
Fotografía 3.2.4-22 Arroyo Rico	57
Fotografía 3.2.4-23 Arroyo Salado	58
Fotografía 3.2.4-24 Arroyo La Yoya	118
Fotografía 3.2.4-25 Arroyo Bran	118
Fotografía 3.2.4-26 Arroyo Manga	118
Fotografía 3.2.4-27 Arroyo Gallego	118
Fotografía 3.2.4-28 Arroyo Regolledo 1	119

Versión No. 1. 07.2022

otografía 3.2.4-29 Arroyo Regolledo 2119
otografía 3.2.4-30 Arroyo Obispo120
otografía 3.2.4-31 Manejo de los residuos sólidos por parte de la comunidad en arroyo Mendoza196
otografía 3.2.4-32 Manejo de los residuos líquidos por parte de la comunidad en as vías en a Aguada de Pablo197
Fotografía 3.2.4-33 Aprovechamiento del recurso hídrico superficial arroyo Regolledo 1197
otografía 3.2.4-34 Actividades ganaderas en la cuenca del arroyo Manga 198
Fotografía 3.2.4-35 Contaminación por actividades pecuarias especies menores porcinas) en el arroyo Javara
otografía 3.2.4-36 Actividad agrícola en la unidad hidrográfica afluente NN2 al embalse El Guájaro199
otografía 3.2.4-37 Procesos de ocupación informal de predios en la cuenca del arroyo Guayepo199

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

3 CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

3.2 MEDIO ABIÓTICO

3.2.4 Hidrología

La hidrología se encarga del análisis del ciclo hidrológico, en términos de cómo y dónde se almacena el agua en superficie, cómo funcionan los flujos de humedad tales como precipitación, evapotranspiración, caudal total y caudal base. Esta caracterización se desarrolla con base en los términos de referencia para la elaboración de Estudio de Impacto Ambiental Proyectos de Explotación de Hidrocarburos HI-TER-1-03 (Ministerio de Ambiente, Vivienda y Desarrollo Territorial - MAVDT, 2010) y la Metodología General para la Elaboración y Presentación de Estudios Ambientales (Ministerio de Ambiente y Desarrollo Sostenible - MADS y Autoridad Nacional de Licencias Ambientales - ANLA, 2018).

El presente numeral describe la caracterización hidrológica del área de influencia a partir de la localización hidrográfica, inventario de cuerpos de agua superficial, cuencas presentes en el área de influencia fisicobiótica, patrones y redes de drenaje, delimitación de las zonas de recarga en las cuencas hidrográficas, características morfométricas de las cuencas en el área de influencia fisicobiótica, clasificación hidrológica de las corrientes según su temporalidad, análisis estadístico de información hidroclimatológica, balance hídrico de largo plazo, régimen hidrológico de caudales medios, caudales extremos de las corrientes en el área de influencia fisicobiótica, análisis multitemporal de la dinámica fluvial, susceptibilidad a la inundación, indicadores hidroclimatológicos y posibles fuentes de contaminación.

3.2.4.1 Localización hidrográfica

Hidrográficamente, el proyecto ÁREA DE EXPLOTACIÓN SINÚ SAN JACINTO NORTE UNO SSJN-1 se localiza en el área hidrográfica Magdalena Cauca (2), zona hidrográfica Bajo Magdalena (29) y las subzonas hidrográficas Canal del Dique Margen Derecho (2903) y Directos al Bajo Magdalena entre Calamar y desembocadura (2904). En el **Tabla 3.2.4-1** y **Figura 3.2.4-1** se presenta la localización hidrográfica del proyecto.

Versión No. 1. 07.2022

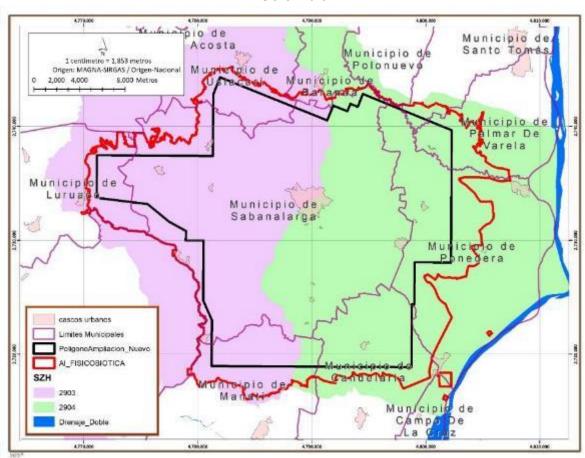

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

Tabla 3.2.4-1 Localización hidrográfica del área de estudio

ÁREA HIDROGRÁFICA	ZONA HIDROGRÁFICA	SUB-ZONA HIDROGRÁFICA		
Cuenca Orden 1	Cuenca Orden 2	Cuenca Orden 3		
		(2903) Canal del Dique margen derecho		
(2) Magdalena Cauca	(29) Bajo Magdalena	(2904) Directos al Bajo Magdalena entre Calamar y desembocadura		

Fuente: (Instituto de Hidrología, Meteorología y Estudios Ambientales - IDEAM, 2013)

Figura 3.2.4-1 Localización área de estudio en la zonificación hidrográfica de Colombia

Fuente: modificado de (Instituto de Hidrología, Meteorología y Estudios Ambientales - IDEAM, 2013) por SGS Colombia, 2021

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

3.2.4.2 Inventario de cuerpos de agua superficial

En el reconocimiento de campo del proyecto se visitaron cuerpos de agua lénticos y lóticos que conforman la red hidrográfica del área de influencia fisicobiótica. Se registraron 340 puntos de verificación de la red hidrográfica, de ellos 131 son sobre cuerpos lénticos y 207 sobre cuerpos lóticos. Este insumo se usó para el refinamiento cartográfico de la red de drenaje y la comprensión de la hidrografía real de la zona. En la **Tabla 3.2.4-2** se presenta la relación de los puntos de control de campo para el inventario de cuerpos de agua y ajuste de red hidrográfica. La visita a campo fue realizada entre los días 22 de febrero al 9 de marzo y del 25 al 26 de marzo del año 2021.

Tabla 3.2.4-2 Puntos de reconocimiento de cuerpos de agua lénticos y lóticos

					,	
ID	DÍA	ESTE [m]*	NORTE [m]*	ELEVACIÓN [msnm]	TIPO CUERPO	NOMBRE
LEN-1	23/02/2021	4778802	2736048	12.431411	Léntico	Jagüey
LEN-2	23/02/2021	4777611	2736234	11.833291	Léntico	Innominado ¹
LEN-3	23/02/2021	4774733	2735912	15.093554	Léntico	Jagüey
LEN-4	23/02/2021	4770415	2735486	31.692501	Léntico	Jagüey
LEN-5	23/02/2021	4770382	2736447	49.565449	Léntico	Jagüey
LEN-6	23/02/2021	4769723	2737650	88.354172	Léntico	Jagüey
LEN-7	23/02/2021	4769579	2732254	15.115767	Léntico	Embalses piscícolas
LEN-8	23/02/2021	4776467	2734825	20.329334	Léntico	Jagüey
LEN-9	23/02/2021	4776460	2734752	19.274639	Léntico	Jagüey
LEN-10	23/02/2021	4776465	2734660	18.232267	Léntico	Jagüey
LEN-11	23/02/2021	4776467	2733916	17.409229	Léntico	Jagüey
LEN-12	24/02/2021	4779032	2729589	-3.157551	Léntico	Jagüey
LEN-13	24/02/2021	4779022	2727874	-5.610074	Léntico	Embalse El Guájaro
LEN-14	24/02/2021	4778049	2728908	-4.192799	Léntico	Embalse El Guájaro
LEN-15	24/02/2021	4778801	2729576	-0.06657	Léntico	Pantano
LEN-16	24/02/2021	4779835	2727899	11.052017	Léntico	Estanques piscícolas
LEN-17	25/02/2021	4790997	2734707	106.392639	Léntico	Jagüey
LEN-18	25/02/2021	4799221	2732412	40.640255	Léntico	Jagüey
LEN-19	25/02/2021	4803188	2733281	16.515799	Léntico	Jagüey
LEN-20	25/02/2021	4803187	2733294	17.453659	Léntico	Jagüey
LEN-21	25/02/2021	4803903	2733325	15.044197	Léntico	Jagüey
LEN-22	25/02/2021	4804816	2733383	14.111404	Léntico	Jagüey
LEN-23	25/02/2021	4805131	2733401	14.216348	Léntico	Jagüey
LEN-24	25/02/2021	4806587	2731554	7.607637	Léntico	Jagüey
LEN-25	25/02/2021	4806312	2731027	7.14275	Léntico	Jagüey
LEN-26	25/02/2021	4805578	2729618	9.516899	Léntico	Jagüey
LEN-27	26/02/2021	4789380	2731104	99.695274	Léntico	Jagüey

¹ Innominado: sin nombre

_

Versión No. 1. 07.2022

ID	DÍA	ESTE [m]*	NORTE [m]*	ELEVACIÓN [msnm]	TIPO CUERPO	NOMBRE
LEN-28	26/02/2021	4784898	2727217	168.309067	Léntico	Jagüey
LEN-29	26/02/2021	4784729	2727202	168.832901	Léntico	Jagüey
LEN-30	26/02/2021	4783977	2728257	159.273834	Léntico	Jagüey
LEN-31	26/02/2021	4779423	2728283	7.107172	Léntico	Jagüey
LEN-32	27/02/2021	4788164	2731614	117.303497	Léntico	Jagüey
LEN-33	27/02/2021	4785571	2730927	84.844574	Léntico	Jagüey
LEN-34	27/02/2021	4787823	2731226	110.21508	Léntico	Jagüey
LEN-35	27/02/2021	4787574	2730585	121.973404	Léntico	Jagüey
LEN-36	27/02/2021	4785992	2730008	100.712494	Léntico	Jagüey
LEN-37	27/02/2021	4776176	2715222	6.473708	Léntico	Jagüey
LEN-38	28/02/2021	4783275	2714448	-2.490904	Léntico	Jagüey
LEN-39	28/02/2021	4785744	2715031	6.368178	Léntico	Jagüey
LEN-40	02/03/2021	4782761	2740927	40.218491	Léntico	Jagüey
LEN-41	02/03/2021	4788308	2742299	69.713806	Léntico	Jagüey
LEN-42	02/03/2021	4788605	2742308	67.008736	Léntico	Jagüey
LEN-43	02/03/2021	4790146	2742866	88.802376	Léntico	Pantano
LEN-44	02/03/2021	4789665	2743604	79.562714	Léntico	Jagüey
LEN-45	02/03/2021	4788682	2743689	71.830956	Léntico	Jagüey
LEN-46	02/03/2021	4787898	2739204	50.830139	Léntico	Jagüey
LEN-47	02/03/2021	4788770	2736381	63.606293	Léntico	Jagüey
LEN-48	02/03/2021	4788895	2735699	68.250122	Léntico	Jagüey
LEN-49	03/03/2021	4782252	2743723	73.462982	Léntico	Lago Palmarito (Jagüey)
LEN-50	03/03/2021	4781409	2742616	81.903908	Léntico	Jagüey
LEN-51	03/03/2021	4782492	2743382	75.288261	Léntico	Lago La Pastora (Jagüey)
LEN-52	03/03/2021	4785044	2746068	88.293854	Léntico	Pantano
LEN-53	03/03/2021	4791818	2743633	92.89875	Léntico	Jagüey
LEN-54	03/03/2021	4791709	2742600	85.477448	Léntico	Jagüey
LEN-55	03/03/2021	4792164	2744090	92.611435	Léntico	Jagüey
LEN-56	03/03/2021	4792684	2744665	82.322762	Léntico	Jagüey
LEN-57	03/03/2021	4792704	2744946	75.084694	Léntico	Laguna
LEN-58	03/03/2021	4792409	2745077	77.889931	Léntico	Lago El Rodo (Jagüey)
LEN-59	04/03/2021	4794090	2745858	70.171295	Léntico	Jagüey
LEN-60	04/03/2021	4794172	2746027	74.431023	Léntico	Jagüey
LEN-61	04/03/2021	4793586	2742237	71.653381	Léntico	Embalses productivos
LEN-62	04/03/2021	4792384	2740144	74.39476	Léntico	Jagüey
LEN-63	04/03/2021	4795123	2737220	63.764709	Léntico	Jagüey
LEN-64	04/03/2021	4793021	2733427	93.647324	Léntico	Jagüey Arroyo Guayepo
LEN-65	05/03/2021	4797576	2727480	31.232922	Léntico	Jagüey
LEN-66	05/03/2021	4797343	2726923	28.725342	Léntico	Embalse del arroyo Guayepo
LEN-67	05/03/2021	4797181	2724755	27.38405	Léntico	Jagüey
LEN-68	05/03/2021	4797412	2724643	25.045189	Léntico	Jagüey
LEN-69	05/03/2021	4796168	2724154	28.777615	Léntico	Jagüey
LEN-70	05/03/2021	4803363	2721232	2.512002	Léntico	Jagüey
LEN-71	06/03/2021	4800920	2718283	-3.128986	Léntico	Jagüey
LEN-74	06/03/2021	4800394	2718104	1.141268	Léntico	Jagüey
LEN-75	06/03/2021	4800344	2718832	2.572734	Léntico	Jagüey

Versión No. 1. 07.2022

ID	DÍA	ESTE [m]*	NORTE [m]*	ELEVACIÓN [msnm]	TIPO CUERPO	NOMBRE
LEN-76	06/03/2021	4800305	2718616	3.984123	Léntico	Jagüey
LEN-77	06/03/2021	4798425	2717156	3.94563	Léntico	Jagüey
LEN-78	06/03/2021	4796221	2716046	9.164252	Léntico	Jagüey
LEN-79	06/03/2021	4794411	2716557	12.871088	Léntico	Jagüey
LEN-80	06/03/2021	4794419	2716760	14.523116	Léntico	Jagüey
LEN-81	06/03/2021	4794446	2717380	18.715023	Léntico	Jagüey
LEN-82	06/03/2021	4794466	2718001	20.571117	Léntico	Jagüey
LEN-83	06/03/2021	4794499	2718675	25.377239	Léntico	Jagüey
LEN-84	06/03/2021	4792592	2722430	68.685966	Léntico	Jagüey
LEN-85	06/03/2021	4792407	2722949	78.403946	Léntico	Jagüey
LEN-86	06/03/2021	4792280	2722998	73.905281	Léntico	Jagüey
LEN-87	06/03/2021	4791571	2723341	74.042427	Léntico	Jagüey
LEN-88	06/03/2021	4790418	2723594	93.190201	Léntico	Jagüey
LEN-89	06/03/2021	4790018	2725988	95.949265	Léntico	Jagüey
LEN-90	06/03/2021	4789991	2726078	97.77774	Léntico	Jagüey
LEN-91	06/03/2021	4789792	2726346	97.514336	Léntico	Jagüey
LEN-92	06/03/2021	4788572	2726907	127.691742	Léntico	Jagüey
LEN-93	06/03/2021	4788742	2726328	116.036255	Léntico	Jagüey
LEN-94	06/03/2021	4788869	2726811	116.521408	Léntico	Jagüey
LEN-95	06/03/2021	4789442	2723191	105.808502	Léntico	Jagüey
LEN-96	07/03/2021	4777889	2735054	9.888991	Léntico	Jagüey
LEN-97	07/03/2021	4777706	2735296	13.205163	Léntico	Jagüey
LEN-98	08/03/2021	4780288	2727694	4.747742	Léntico	Jagüey
LEN-99	08/03/2021	4780281	2727687	2.988624	Léntico	Jagüey
100	08/03/2021	4779428	2718465	0.308159	Léntico	Embalse El Guájaro
LEN- 101	8/03/2021	4773070	2709057	-1.438655	Léntico	Embalse El Guájaro
LEN- 102	8/03/2021	4790935	2731272	79.14325	Léntico	Jagüey
LEN- 103	8/03/2021	4790888	2730703	82.582092	Léntico	Jagüey
LEN- 104	8/03/2021	4791205	2730012	84.708206	Léntico	Jagüey
LEN- 105	9/03/2021	4795196	2736873	54.893856	Léntico	Jagüey
LEN- 106	9/03/2021	4797747	2737733	44.844166	Léntico	Jagüey
LEN- 107	9/03/2021	4800310	2738104	29.70154	Léntico	Jagüey
LEN- 108	9/03/2021	4799837	2735822	29.088768	Léntico	Jagüey
LEN- 109	9/03/2021	4799884	2733521	30.49818	Léntico	Jagüey
LEN- 110	9/03/2021	4796698	2733781	63.549709	Léntico	Jagüey
LEN- 111	9/03/2021	4793559	2731466	76.304306	Léntico	Jagüey

Versión No. 1. 07.2022

LEN-	ID	DÍA	ESTE [m]*	NORTE [m]*	ELEVACIÓN [msnm]	TIPO CUERPO	NOMBRE
113		9/03/2021	4793691	2731148	67.772865	Léntico	Jagüey
114		9/03/2021	4795706	2723932	36.293884	Léntico	Jagüey
LEN-		9/03/2021	4795587	2724096	39.60899	Léntico	Jagüey
116	LEN-	9/03/2021	4794814	2724068	46.055183	Léntico	Jagüey
LEN- 117 9/03/2021 4801269 2721263 20.785866 Léntico Jagüey LEN- 118 9/03/2021 4801736 2722176 22.318636 Léntico Jagüey LEN- 119 9/03/2021 4802338 2723356 22.337097 Léntico Jagüey LEN- 120 9/03/2021 4802615 2723895 23.164528 Léntico Jagüey LEN- 121 9/03/2021 4802890 2724445 20.621208 Léntico Jagüey LEN- 122 9/03/2021 4803088 2724805 20.197895 Léntico Jagüey LEN- 123 9/03/2021 4804556 2727617 17.249058 Léntico Jagüey LEN- 124 9/03/2021 4804845 2728170 16.759792 Léntico Jagüey LEN- 125 9/03/2021 4805109 2728678 16.911255 Léntico Jagüey LEN- 126 25/03/2021 4785084 2731397 88.668732 Léntico Jagüey LEN- 127 25/03/2021		9/03/2021	4798123	2727747	41.712006	Léntico	Jagüey
118 9/03/2021 4801/36 2/221/6 22.318636 Lentico Jagüey LEN-119 9/03/2021 4802338 2723356 22.337097 Léntico Jagüey LEN-120 9/03/2021 4802615 2723895 23.164528 Léntico Jagüey LEN-121 9/03/2021 4802890 2724445 20.621208 Léntico Jagüey LEN-122 9/03/2021 4803088 2724805 20.197895 Léntico Jagüey LEN-123 9/03/2021 4804556 2727617 17.249058 Léntico Jagüey LEN-124 9/03/2021 4804845 2728170 16.759792 Léntico Jagüey LEN-125 9/03/2021 4805109 2728678 16.911255 Léntico Jagüey LEN-126 25/03/2021 4785084 2731397 88.668732 Léntico Jagüey LEN-127 25/03/2021 4787630 2736508 57.269009 Léntico Jagüey LEN-129 25/03/2021 47	LEN-	9/03/2021	4801269	2721263	20.785866	Léntico	Jagüey
LEN-119 9/03/2021 4802338 2723356 22.337097 Léntico Jagüey LEN-120 9/03/2021 4802615 2723895 23.164528 Léntico Jagüey LEN-121 9/03/2021 4802890 2724445 20.621208 Léntico Jagüey LEN-121 9/03/2021 4803088 2724805 20.197895 Léntico Jagüey LEN-123 9/03/2021 4804556 2727617 17.249058 Léntico Jagüey LEN-124 9/03/2021 4804845 2728170 16.759792 Léntico Jagüey LEN-125 9/03/2021 4805109 2728678 16.911255 Léntico Jagüey LEN-126 25/03/2021 4785084 2731397 88.668732 Léntico Jagüey LEN-127 25/03/2021 4787630 2736508 57.269009 Léntico Jagüey LEN-129 25/03/2021 4798151 2729337 53.925301 Léntico Jagüey LEN-131 25/03/2021 <		9/03/2021	4801736	2722176	22.318636	Léntico	Jagüey
120	LEN-	9/03/2021	4802338	2723356	22.337097	Léntico	Jagüey
121 9/03/2021 4802890 2724445 20.621208 Lentico Jagüey		9/03/2021	4802615	2723895	23.164528	Léntico	Jagüey
122 9/03/2021 4803088 2724805 20.197895 Lentico Jagüey		9/03/2021	4802890	2724445	20.621208	Léntico	Jagüey
123 9/03/2021 4804536 2/2/617 17.249038 Lentico Jagüey LEN-124 9/03/2021 4804845 2728170 16.759792 Léntico Jagüey LEN-125 9/03/2021 4805109 2728678 16.911255 Léntico Jagüey LEN-126 25/03/2021 4785084 2731397 88.668732 Léntico Jagüey LEN-127 25/03/2021 4785213 2732588 66.873802 Léntico Jagüey LEN-128 25/03/2021 4787630 2736508 57.269009 Léntico Jagüey LEN-129 25/03/2021 4798151 2729337 53.925301 Léntico Jagüey LEN-130 25/03/2021 4799317 2727180 45.944946 Léntico Jagüey LEN-131 25/03/2021 4795805 2725904 53.086647 Léntico Jagüey LEN-132 26/03/2021 4794706 2740794 91.28331 Léntico Jagüey LEN-133 26/03/2021 <t< td=""><td></td><td>9/03/2021</td><td>4803088</td><td>2724805</td><td>20.197895</td><td>Léntico</td><td>Jagüey</td></t<>		9/03/2021	4803088	2724805	20.197895	Léntico	Jagüey
124 9/03/2021 4804845 2/281/0 16.759/92 Lentico Jagüey LEN-125 9/03/2021 4805109 2728678 16.911255 Léntico Jagüey LEN-126 25/03/2021 4785084 2731397 88.668732 Léntico Jagüey LEN-127 25/03/2021 4785213 2732588 66.873802 Léntico Jagüey LEN-128 25/03/2021 4787630 2736508 57.269009 Léntico Jagüey LEN-129 25/03/2021 4798151 2729337 53.925301 Léntico Jagüey LEN-130 25/03/2021 4799317 2727180 45.944946 Léntico Jagüey LEN-131 25/03/2021 4795805 2725904 53.086647 Léntico Jagüey LEN-132 26/03/2021 4794706 2740794 91.28331 Léntico Jagüey LEN-133 26/03/2021 4794666 2740817 93.567833 Léntico Jagüey		9/03/2021	4804556	2727617	17.249058	Léntico	Jagüey
125 97/03/2021 4805109 2728678 16.911255 Lentico Jagüey LEN- 126 25/03/2021 4785084 2731397 88.668732 Léntico Jagüey LEN- 127 25/03/2021 4785213 2732588 66.873802 Léntico Jagüey LEN- 128 25/03/2021 4787630 2736508 57.269009 Léntico Jagüey LEN- 129 25/03/2021 4798151 2729337 53.925301 Léntico Jagüey LEN- 130 25/03/2021 4799317 2727180 45.944946 Léntico Jagüey LEN- 131 25/03/2021 4795805 2725904 53.086647 Léntico Jagüey LEN- 132 26/03/2021 4794706 2740794 91.28331 Léntico Jagüey LEN- 133 26/03/2021 4794666 2740817 93.567833 Léntico Jagüey		9/03/2021	4804845	2728170	16.759792	Léntico	Jagüey
126 25/03/2021 4785084 2731397 88.668732 Lentico Jagüey LEN-127 25/03/2021 4785213 2732588 66.873802 Léntico Jagüey LEN-128 25/03/2021 4787630 2736508 57.269009 Léntico Jagüey LEN-129 25/03/2021 4798151 2729337 53.925301 Léntico Jagüey LEN-130 25/03/2021 4799317 2727180 45.944946 Léntico Jagüey LEN-131 25/03/2021 4795805 2725904 53.086647 Léntico Jagüey LEN-132 26/03/2021 4794706 2740794 91.28331 Léntico Jagüey LEN-133 26/03/2021 4794666 2740817 93.567833 Léntico Jagüey		9/03/2021	4805109	2728678	16.911255	Léntico	Jagüey
127 25/03/2021 4785213 2732588 66.873802 Lentico Jagüey LEN- 128 25/03/2021 4787630 2736508 57.269009 Léntico Jagüey LEN- 129 25/03/2021 4798151 2729337 53.925301 Léntico Jagüey LEN- 130 25/03/2021 4799317 2727180 45.944946 Léntico Jagüey LEN- 131 25/03/2021 4795805 2725904 53.086647 Léntico Jagüey LEN- 132 26/03/2021 4794706 2740794 91.28331 Léntico Jagüey LEN- 133 26/03/2021 4794666 2740817 93.567833 Léntico Jagüey		25/03/2021	4785084	2731397	88.668732	Léntico	Jagüey
128 25/03/2021 4787630 2736508 57.269009 Lentico Jagüey LEN-129 25/03/2021 4798151 2729337 53.925301 Léntico Jagüey LEN-130 25/03/2021 4799317 2727180 45.944946 Léntico Jagüey LEN-131 25/03/2021 4795805 2725904 53.086647 Léntico Jagüey LEN-132 26/03/2021 4794706 2740794 91.28331 Léntico Jagüey LEN-133 26/03/2021 4794666 2740817 93.567833 Léntico Jagüey		25/03/2021	4785213	2732588	66.873802	Léntico	Jagüey
129 25/03/2021 4798151 2729337 53.925301 Lentico Jagüey LEN- 130 25/03/2021 4799317 2727180 45.944946 Léntico Jagüey LEN- 131 25/03/2021 4795805 2725904 53.086647 Léntico Jagüey LEN- 132 26/03/2021 4794706 2740794 91.28331 Léntico Jagüey LEN- 133 26/03/2021 4794666 2740817 93.567833 Léntico Jagüey		25/03/2021	4787630	2736508	57.269009	Léntico	Jagüey
130 25/03/2021 4799317 272/180 45.944946 Lentico Jagüey LEN- 131 25/03/2021 4795805 2725904 53.086647 Léntico Jagüey LEN- 132 26/03/2021 4794706 2740794 91.28331 Léntico Jagüey LEN- 133 26/03/2021 4794666 2740817 93.567833 Léntico Jagüey		25/03/2021	4798151	2729337	53.925301	Léntico	Jagüey
131 25/03/2021 4793805 2725904 53.086647 Lentico Jaguey LEN- 132 26/03/2021 4794706 2740794 91.28331 Léntico Jagüey LEN- 133 26/03/2021 4794666 2740817 93.567833 Léntico Jagüey		25/03/2021	4799317	2727180	45.944946	Léntico	Jagüey
132 26/03/2021 4/94/06 2/40/94 91.28331 Lentico Jaguey LEN- 133 26/03/2021 4794666 2740817 93.567833 Léntico Jagüey		25/03/2021	4795805	2725904	53.086647	Léntico	Jagüey
133 26/03/2021 4/94666 2/40817 93.56/833 Lentico Jaguey	132	26/03/2021	4794706	2740794	91.28331	Léntico	Jagüey
		26/03/2021	4794666	2740817	93.567833	Léntico	Jagüey
LOT-1 22/02/2021 4773056 2709073 6.402421 Lótico Compuertas canal Diq LOT-2 23/02/2021 4787972 2734398 57.216305 Lótico Arroyo del Pobre							Compuertas canal Dique

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

ID	DÍA	ESTE [m]*	NORTE [m]*	ELEVACIÓN	TIPO	NOMBRE
-				[msnm]	CUERPO	
LOT-3	23/02/2021	4784177	2735354	45.448795	Lótico	Arroyo Innominado ²
LOT-4	23/02/2021	4777429	2736274	13.02734	Lótico	Arroyo Molinero
LOT-5	23/02/2021	4777420	2736239	9.985808	Lótico	Arroyo Molinero
LOT-6	23/02/2021	4769096	2737793	98.000145	Lótico	Arroyo Salado
LOT-7	23/02/2021	4769534	2735037	68.818108	Lótico	Arroyo innominado
LOT-8	23/02/2021	4769284	2733139	35.337769	Lótico	Arroyo innominado
LOT-9	23/02/2021	4776682	2735357	20.11972	Lótico	Canal
LOT-10	24/02/2021	4781495	2735292	6.516582	Lótico	Arroyo Cascabel
LOT-11	24/02/2021	4780503	2733960	9.025399	Lótico	Arroyo Bran
LOT-12	24/02/2021	4779321	2732085	5.795694	Lótico	Arroyo Caño Las Negras
LOT-13	24/02/2021	4778939	2730745	-2.633257	Lótico	Arroyo Palmar Oscuro
LOT-14	24/02/2021	4779033	2729588	-3.072541	Lótico	Arroyo innominado
LOT-15	24/02/2021	4779090	2727876	-5.028645	Lótico	Canal
LOT-16	24/02/2021	4779905	2727874	6.799641	Lótico	Arroyo de Mendoza
LOT-17	24/02/2021	4780503	2726774	13.362209	Lótico	Arroyo Albornoz
LOT-18	24/02/2021	4780180	2726092	2.897482	Lótico	Arroyo Obispo
LOT-19	24/02/2021	4780115	2726134	4.422795	Lótico	Arroyo Obispo
LOT-20	24/02/2021	4781276	2724668	22.633018	Lótico	Arroyo La Peña
LOT-21	24/02/2021	4780936	2722971	6.136496	Lótico	Arroyo Regolledo 2
LOT-22	24/02/2021	4780932	2722971	5.494081	Lótico	Arroyo Regolledo 2
LOT-23	24/02/2021	4780876	2722786	5.842771	Lótico	Arroyo Regolledo 1
LOT-24	24/02/2021	4780873	2722784	5.040619	Lótico	Arroyo Regolledo 1
LOT-25	25/02/2021	4796150	2730913	52.652134	Lótico	Arroyo Portugués
LOT-26	25/02/2021	4798750	2730728	36.672619	Lótico	Arroyo Guayepo
LOT-27	25/02/2021	4801432	2733186	22.632235	Lótico	Arroyo Martillo
LOT-28	25/02/2021	4803460	2733309	15.757293	Lótico	Arroyo Caño Fístola
LOT-29	25/02/2021	4808938	2734878	-3.262552	Lótico	Río Magdalena
LOT-30	25/02/2021	4807340	2735568	9.984405	Lótico	Arroyo Grande
LOT-31	25/02/2021	4807309	2735573	4.966918	Lótico	Arroyo Grande
LOT-32	25/02/2021	4807389	2735574	7.598295	Lótico	Arroyo Grande
LOT-33	25/02/2021	4811160	2737965	0.848211	Lótico	Río Magdalena
LOT-34	25/02/2021	4807802	2735668	-2.025463	Lótico	Arroyo Grande
LOT-35	25/02/2021	4806908	2732161	6.13571	Lótico	Arroyo Caño Fístola
LOT-36	25/02/2021	4805962	2730347	6.128775	Lótico	Arroyo Guayepo
LOT-37	25/02/2021	4805768	2729970	7.599022	Lótico	Arroyo Cojo
LOT-38	25/02/2021	4805790	2729962	8.476593	Lótico	Arroyo Cojo
LOT-39	26/02/2021	4789431	2731189	99.573982	Lótico	Arroyo innominado ³
LOT-40	26/02/2021	4789213	2730590	97.377548	Lótico	Arroyo Caracolí
LOT-41	26/02/2021	4784462	2726309	102.114494	Lótico	Arroyo innominado
LOT-42	26/02/2021	4784443	2726303	99.554932	Lótico	Arroyo innominado

² Innominado: sin nombre

³ Innominado: sin nombre

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

10	DÍA	FCTF []*	NORTE (mal*	ELEVACIÓN	TIPO	NOAARRE
ID	DIA	ESTE [m]*	NORTE [m]*	[msnm]	CUERPO	NOMBRE
LOT-43	26/02/2021	4783593	2725966	75.113266	Lótico	Arroyo La Yoya
LOT-44	26/02/2021	4783520	2725918	68.634659	Lótico	Arroyo La Yoya
LOT-45	26/02/2021	4783373	2725948	63.416824	Lótico	Arroyo La Yoya
LOT-46	26/02/2021	4783098	2728369	86.409081	Lótico	Arroyo Mendoza
LOT-47	26/02/2021	4783079	2728309	84.651848	Lótico	Arroyo Mendoza
LOT-48	26/02/2021	4782920	2728192	79.839081	Lótico	Arroyo Mendoza
LOT-49	26/02/2021	4780901	2730876	52.858421	Lótico	Arroyo innominado
LOT-50	26/02/2021	4780503	2730639	45.800117	Lótico	Arroyo innominado
LOT-51	26/02/2021	4780300	2730072	38.767506	Lótico	Arroyo innominado
LOT-52	26/02/2021	4781827	2728501	54.332981	Lótico	Arroyo innominado
LOT-53	26/02/2021	4781859	2728504	59.476856	Lótico	Arroyo innominado
LOT-54	26/02/2021	4782482	2728286	78.405914	Lótico	Arroyo innominado
LOT-55	27/02/2021	4786368	2731144	85.769829	Lótico	Arroyo innominado
LOT-56	27/02/2021	4785852	2731030	81.548904	Lótico	Arroyo Cascabel
LOT-57	27/02/2021	4785250	2730373	91.024414	Lótico	Arroyo Arena
LOT-58	27/02/2021	4786138	2730065	86.523499	Lótico	Arroyo Cascabel
LOT-59	27/02/2021	4786148	2725690	155.238663	Lótico	Arroyo Javara
LOT-60	27/02/2021	4783527	2725502	64.150932	Lótico	Afluente Arroyo La Peña
						Arroyo innominado
LOT-61	27/02/2021	4783351	2723025	80.73201	Lótico	Afluente Embalse El
						Guájaro
LOT-62	27/02/2021	4780316	2721163	10.952393	Lótico	Arroyo Ringo
LOT-63	27/02/2021	4780349	2719875	9.145716	Lótico	Arroyo Innominado4
LOT-64	27/02/2021	4779982	2718940	19.951097	Lótico	Arroyo Caimán
LOT-65	27/02/2021	4776137	2715248	7.225813	Lótico	Canal
LOT-66	27/02/2021	4787959	2719292	51.906162	Lótico	Arroyo Pantano
LOT-67	27/02/2021	4787258	2720592	72.994957	Lótico	Arroyo Pantano
LOT-68	27/02/2021	4787240	2721147	77.531708	Lótico	Afluente arroyo Pajonal o
LO1-00	27/02/2021	4707240	2/2114/	77.551700	LONCO	Gracia
LOT-69	27/02/2021	4786167	2721965	101.617767	Lótico	Afluente arroyo Pajonal o
20107	27 / 02 / 202 1	17 00 107	2/21/00	101.017707	201100	Gracia
LOT-70	27/02/2021	4785611	2723126	128.194962	Lótico	Afluente arroyo Pajonal o
						Gracia
LOT-71	28/02/2021	4781217	2714322	-4.393106	Lótico	Canal
LOT-72	28/02/2021	4785630	2713997	6.95041	Lótico	Arroyo El Chorrillo
LOT-73	28/02/2021	4785567	2715164	7.256815	Lótico	Arroyo Innominado
LOT-74	28/02/2021	4785415	2716285	15.545063	Lótico	Arroyo Malavet
LOT-75	28/02/2021	4785206	2716275	16.623142	Lótico	Afluente arroyo Malavet
LOT-76	28/02/2021	4784381	2716647	17.270588	Lótico	Arroyo Innominado
LOT-77	28/02/2021	4768868	2737905	100.149178	Lótico	Arroyo Salado

⁴ Innominado: sin nombre

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

ID	DÍA	ESTE [m]*	NORTE [m]*	ELEVACIÓN [msnm]	TIPO CUERPO	NOMBRE
LOT-78	28/02/2021	4770478	2735855	43.492233	Lótico	Arroyo Innominado
LOT-79	28/02/2021	4775618	2738636	26.149975	Lótico	Arroyo El Chorro
LOT-80	28/02/2021	4774418	2739428	32.362915	Lótico	Afluente Innominado ⁵ Arroyo El Diluvio Salado
LOT-81	28/02/2021	4772846	2739509	35.423607	Lótico	Arroyo El Diluvio
LOT-82	28/02/2021	4770923	2739573	52.565125	Lótico	Afluente Innominado Arroyo Bajo del Loco
LOT-83	01/03/2021	4784194	2733709	43.447075	Lótico	Arroyo Cascabel
LOT-84	01/03/2021	4783516	2732198	71.8918	Lótico	Arroyo Flecha
LOT-85	01/03/2021	4780385	2737560	20.007599	Lótico	Arroyo Platanal
LOT-86	01/03/2021	4780863	2737908	24.64994	Lótico	Afluente Arroyo Platanal (Arroyo Isabel López)
LOT-87	01/03/2021	4779164	2738222	23.833822	Lótico	Arroyo Porquera
LOT-88	02/03/2021	4788419	2733658	70.382393	Lótico	Arroyo Innominado
LOT-89	02/03/2021	4780402	2739727	23.093254	Lótico	Arroyo Bajo del Loco
LOT-90	02/03/2021	4779988	2740289	24.759497	Lótico	Arroyo Innominado
LOT-91	02/03/2021	4779112	2741420	30.443344	Lótico	Arroyo Cherere
LOT-92	02/03/2021	4781099	2738308	21.51207	Lótico	Arroyo Isabel Lópéz
LOT-93	02/03/2021	4782929	2741214	43.914886	Lótico	Arroyo El Chorro
LOT-94	02/03/2021	4783162	2742886	62.224075	Lótico	Arroyo El Pueblo
LOT-95	02/03/2021	4783872	2744563	95.870239	Lótico	Arroyo Platanal
LOT-96	02/03/2021	4785530	2744244	63.468678	Lótico	Arroyo Lugo
LOT-97	02/03/2021	4785842	2743885	61.620247	Lótico	Arroyo Mico
LOT-98	02/03/2021	4786516	2742911	57.354202	Lótico	Arroyo Innominado
LOT-99	02/03/2021	4787792	2742535	62.945663	Lótico	Arroyo Innominado ⁶
LOT- 100	02/03/2021	4788002	2742444	62.492249	Lótico	Arroyo Salado
LOT- 101	02/03/2021	4788679	2742316	62.991764	Lótico	Arroyo Innominado
LOT- 102	02/03/2021	4788935	2743773	69.277519	Lótico	Arroyo El Salado
LOT- 103	02/03/2021	4788812	2743205	65.011703	Lótico	Arroyo El Salado
LOT- 104	02/03/2021	4790920	2746011	81.170036	Lótico	Afluente Arroyo Grande
LOT- 105	02/03/2021	4790714	2746549	84.132332	Lótico	Arroyo Grande
LOT- 106	02/03/2021	4789949	2739880	61.970444	Lótico	Arroyo Innominado

⁵ Innominado: sin nombre

⁶ Innominado: sin nombre

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

ID	DÍA	ESTE [m]*	NORTE [m]*	ELEVACIÓN [msnm]	TIPO CUERPO	NOMBRE
LOT- 107	02/03/2021	4786803	2741409	56.072113	Lótico	Arroyo Salado (Arroyo Mazorca según comunidad)
LOT- 108	02/03/2021	4787909	2739182	47.094036	Lótico	Afluente arroyo Cabeza León
LOT- 109	02/03/2021	4787985	2739069	51.474316	Lótico	Arroyo del Medio
LOT- 110	02/03/2021	4788781	2736278	63.842148	Lótico	Arroyo Innominado
LOT- 111	02/03/2021	4789138	2734746	73.075287	Lótico	Arroyo Cajón
LOT- 112	03/03/2021	4783987	2745633	85.846817	Lótico	Arroyo Innominado
LOT- 113	03/03/2021	4783490	2746166	102.743767	Lótico	Arroyo Cajón
LOT- 114	03/03/2021	4783586	2746419	104.665489	Lótico	Arroyo Cajón
LOT- 115	03/03/2021	4782033	2746859	97.909676	Lótico	Arroyo Agua Fría
LOT- 116	03/03/2021	4781514	2746928	105.9673	Lótico	Arroyo Tambora
LOT- 117	03/03/2021	4780779	2745187	65.64019	Lótico	Arroyo Porquera
LOT- 118	03/03/2021	4781806	2745383	85.564796	Lótico	Arroyo del Pueblo
LOT- 119	03/03/2021	4782463	2745562	79.474823	Lótico	Arroyo Innominado ⁷
LOT- 120	03/03/2021	4783516	2745579	81.38546	Lótico	Arroyo Cajón
LOT- 121	03/03/2021	4782850	2743306	67.580719	Lótico	Arroyo El Pueblo
LOT- 122	03/03/2021	4785774	2746095	76.08445	Lótico	Arroyo Lugo
LOT- 123	03/03/2021	4791719	2742601	84.110619	Lótico	Arroyo Bujo
LOT- 124	04/03/2021	4793622	2744237	57.672485	Lótico	Arroyo Grande
LOT- 125	04/03/2021	4795068	2743837	55.480637	Lótico	Arroyo Grande
LOT- 126	04/03/2021	4793288	2741682	67.413757	Lótico	Arroyo Bujo
LOT- 127	04/03/2021	4792364	2740116	73.20533	Lótico	Arroyo Innominado

⁷ Innominado: sin nombre

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

ID	DÍA	ESTE [m]*	NORTE [m]*	ELEVACIÓN [msnm]	TIPO CUERPO	NOMBRE
LOT- 128	04/03/2021	4793782	2738580	58.8386	Lótico	Arroyo Innominado
LOT- 129	04/03/2021	4793552	2738459	60.83382	Lótico	Arroyo Innominado
LOT- 130	04/03/2021	4793338	2738371	59.359558	Lótico	Arroyo Innominado
LOT- 131	04/03/2021	4791713	2736883	71.583771	Lótico	Arroyo Manga
LOT- 132	04/03/2021	4791068	2736419	80.816536	Lótico	Arroyo Manga
LOT- 133	04/03/2021	4791935	2736390	81.686134	Lótico	Arroyo Innominado
LOT- 134	04/03/2021	4792196	2736376	80.040489	Lótico	Arroyo Innominado
LOT- 135	04/03/2021	4795627	2737792	48.064106	Lótico	Arroyo Manga
LOT- 136	04/03/2021	4799161	2738237	31.713619	Lótico	Arroyo Grande
LOT- 137	04/03/2021	4792454	2730943	71.455376	Lótico	Arroyo Cojo
LOT- 138	04/03/2021	4791193	2731774	81.15107	Lótico	Arroyo Cojo
LOT- 139	05/03/2021	4798028	2728780	29.707163	Lótico	Arroyo El Cojo
LOT- 140	05/03/2021	4797378	2727051	30.418381	Lótico	Arroyo Guayepo
LOT- 141	05/03/2021	4796964	2726026	27.181751	Lótico	Arroyo El Pilón
LOT- 142	05/03/2021	4796756	2725560	29.120972	Lótico	Arroyo Innominado ⁸
LOT- 143	05/03/2021	4796134	2724067	25.407768	Lótico	Arroyo Innominado
LOT- 144	05/03/2021	4799171	2720578	8.70041	Lótico	Arroyo Innominado
LOT- 145	05/03/2021	4800707	2719797	6.092813	Lótico	Arroyo Orijata
LOT- 146	05/03/2021	4801666	2719577	2.074669	Lótico	Arroyo Orijata
LOT- 147	05/03/2021	4802390	2720455	2.741836	Lótico	Arroyo Guanábano
LOT- 148	05/03/2021	4805810	2722092	4.238878	Lótico	Río Magdalena
LOT- 149	05/03/2021	4805533	2721908	3.698367	Lótico	Río Magdalena

8 Innominado: sin nombre

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

ID	DÍA	ESTE [m]*	NORTE [m]*	ELEVACIÓN [msnm]	TIPO CUERPO	NOMBRE
LOT- 150	05/03/2021	4802156	2719888	10.251248	Lótico	Río Magdalena
LOT- 151	05/03/2021	4799212	2717523	8.087527	Lótico	Canal doble
LOT- 152	05/03/2021	4798900	2717385	7.294082	Lótico	Canal
LOT- 153	05/03/2021	4798755	2717325	6.033694	Lótico	Canal
LOT- 154	06/03/2021	4800863	2718166	-1.675518	Lótico	Canal sin nombre
LOT- 155	06/03/2021	4801614	2716275	-4.091806	Lótico	Río Magdalena
LOT- 156	06/03/2021	4801540	2716135	-4.426659	Lótico	Río Magdalena
LOT- 157	06/03/2021	4800395	2718115	1.096204	Lótico	Canal
LOT- 158	06/03/2021	4794547	2719806	29.200619	Lótico	Arroyo Leña
LOT- 159	06/03/2021	4795005	2721351	36.731102	Lótico	Arroyo Gallego
LOT- 160	06/03/2021	4790200	2724121	78.341316	Lótico	Arroyo León
LOT- 161	06/03/2021	4790220	2724161	77.796349	Lótico	Arroyo Gallego
LOT- 162	06/03/2021	4790177	2724198	79.211342	Lótico	Arroyo Gallego
LOT- 163	06/03/2021	4790052	2724354	80.162949	Lótico	Arroyo Gallego
LOT- 164	06/03/2021	4789958	2725769	90.542778	Lótico	Arroyo Cabarca
LOT- 165	06/03/2021	4789499	2726436	98.636276	Lótico	Arroyo Patilla
LOT- 166	06/03/2021	4789095	2727747	100.099533	Lótico	Arroyo innominado ⁹
LOT- 167	06/03/2021	4789826	2730490	83.666084	Lótico	Arroyo Armadillo
LOT- 168	06/03/2021	4789851	2731095	89.209534	Lótico	Arroyo Innominado
LOT- 169	06/03/2021	4787391	2727598	135.098923	Lótico	Arroyo Armadillo
LOT- 170	06/03/2021	4788784	2726594	109.293427	Lótico	Arroyo Patilla
LOT- 171	06/03/2021	4788760	2726453	108.622154	Lótico	Arroyo Innominado

⁹ Innominado: sin nombre

Versión No. 1. 07.2022

ID	DÍA	ESTE [m]*	NORTE [m]*	ELEVACIÓN [msnm]	TIPO CUERPO	NOMBRE
LOT- 172	06/03/2021	4789093	2723002	101.13118	Lótico	Arroyo Leña
LOT- 173	07/03/2021	4782692	2734798	37.179081	Lótico	Arroyo Innominado
LOT- 174	07/03/2021	4783205	2734829	35.43441	Lótico	Arroyo Cascabel
LOT- 175	07/03/2021	4783565	2734784	37.65403	Lótico	Arroyo Cascabel
LOT- 176	07/03/2021	4779775	2734909	12.93336	Lótico	Arroyo Bran
LOT-	07/03/2021	4778935	2730228	12.256663	Lótico	Arroyo Innominado
LOT- 178	08/03/2021	4780363	2727671	10.07323	Lótico	Arroyo Gabito
LOT- 179	08/03/2021	4781504	2725555	21.191854	Lótico	Arroyo La Yoya
LOT- 180	08/03/2021	4780380	2721070	5.411807	Lótico	Arroyo Rico
LOT- 181	08/03/2021	4780959	2720913	11.90662	Lótico	Arroyo Rico
LOT- 182	08/03/2021	4781158	2720913	14.263434	Lótico	Arroyo Rico
LOT- 183	08/03/2021	4781478	2720792	24.772627	Lótico	Arroyo Rico
LOT- 184	08/03/2021	4773020	2709049	-2.299777	Lótico	Canal del Dique
LOT- 185	8/03/2021	4790704	2731966	75.253555	Lótico	Afluente arroyo Cojo
LOT- 186	8/03/2021	4790868	2730891	74.392975	Lótico	Arroyo Armadillo
LOT- 187	8/03/2021	4791293	2729913	79.982071	Lótico	Arroyo Las Yeguas
LOT- 188	9/03/2021	4797246	2735859	33.63483	Lótico	Arroyo Manga
LOT- 189	9/03/2021	4800260	2737635	15.489988	Lótico	Arroyo Grande
LOT- 190	9/03/2021	4799954	2736699	19.414965	Lótico	Arroyo Manga
LOT- 191	9/03/2021	4799832	2733361	32.925331	Lótico	Arroyo Fístola
LOT- 192	9/03/2021	4799713	2733303	36.463341	Lótico	Arroyo Fístola
LOT- 193	9/03/2021	4794712	2733579	61.612526	Lótico	Arroyo Guayepo
LOT- 194	9/03/2021	4800631	2719918	17.036278	Lótico	Arroyo Orijata
LOT- 195	9/03/2021	4801415	2721551	19.23798	Lótico	Arroyo Guanábano

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

ID	DÍA	ESTE [m]*	NORTE [m]*	ELEVACIÓN [msnm]	TIPO CUERPO	NOMBRE
LOT- 196	9/03/2021	4804401	2727324	16.662481	Lótico	Arroyo innominado ¹⁰
LOT- 197	9/03/2021	4804661	2727840	16.08798	Lótico	Arroyo innominado
LOT- 198	25/03/2021	4785581	2731916	69.768486	Lótico	Arroyo Cascabel
LOT- 199	25/03/2021	4784921	2732679	58.491516	Lótico	Arroyo Cascabel
LOT- 200	25/03/2021	4787033	2736902	56.945602	Lótico	Arroyo innominado ¹¹
LOT- 201	25/03/2021	4799150	2728341	42.954987	Lótico	Arroyo El Cojo
LOT- 202	25/03/2021	4794991	2727133	56.134937	Lótico	Arroyo Lucho Juárez
LOT- 203	26/03/2021	4797881	2741439	53.404842	Lótico	Arroyo Grande
LOT- 204	26/03/2021	4796684	2742355	54.200771	Lótico	Arroyo Grande
LOT- 205	26/03/2021	4793782	2738578	66.175537	Lótico	Arroyo innominado
LOT- 206	26/03/2021	4793553	2738459	68.149506	Lótico	Arroyo innominado
LOT- 207	26/03/2021	4793336	2738368	66.502243	Lótico	Arroyo innominado

Nota: * coordenadas del punto de observación Fuente: SGS Colombia, 2021

3.2.4.2.1 Sistemas lénticos

Los sistemas lenticos se refieren a las aguas continentales que se encuentran rodeadas por tierra, donde se presentan movimientos de agua muy lentos, casi imperceptibles que generan una dinámica natural en los cuerpos de agua. Para el presente estudio se discriminaron los sistemas lenticos de la siguiente manera: Jagüeyes – Estanques artificiales, estanques Piscícolas, embalse. Los jagüeyes representan la gran mayoría de los cuerpos de agua lénticos identificados en el área de influencia, esto se debe a que es la manera más extendida de generar retención de agua en superficie para uso del recurso hídrico. Esto se debe a que los arroyos del área de influencia son, casi en su totalidad, cuerpos de agua

10 Innominado: sin nombre

11 Innominado: sin nombre

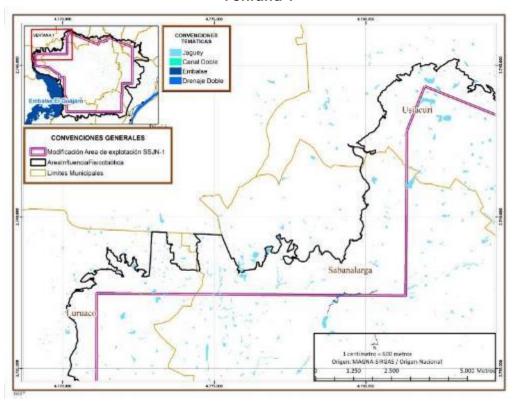
Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

intermitentes o efímeros, es decir que sólo transportan agua luego de un evento fuerte de precipitación. En ese orden de ideas, dado que los arroyos permanecen secos la mayor parte del año, la comunidad del área opta por realizar excavaciones en concavidades del terreno y obras de embalsamiento de agua en los arroyos (diques, compuertas).

El cuerpo de agua léntico más importante y de mayor tamaño en la zona es el embalse El Guájaro, el cual es un hidrosistema léntico regulado a partir de dos compuertas localizadas en la parte sur del espejo de agua, a saber: compuertas El Porvenir y Villa Rosa. En estos puntos se da el intercambio de agua de embalse con el canal del Dique. El embalse el Guájaro es primordialmente receptor de agua del canal del Dique, lo que permite que se mantenga el espejo de agua de manera permanente (ver **Fotografía 3.2.4-1).**

A continuación, se presentan mediante 8 ventanas los Sistemas lénticos identificados en el área de influencia fisicobiótica y que su detalle de localización y registro fotográfico se presentan en el archivo "Sistemas Lénticos.xlsx" en el Anexo F. Carteras de Campo/ Hidrología / Trabajo de Campo.


CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

Fotografía 3.2.4-1 Embalse el Guájaro en vereda La Peña

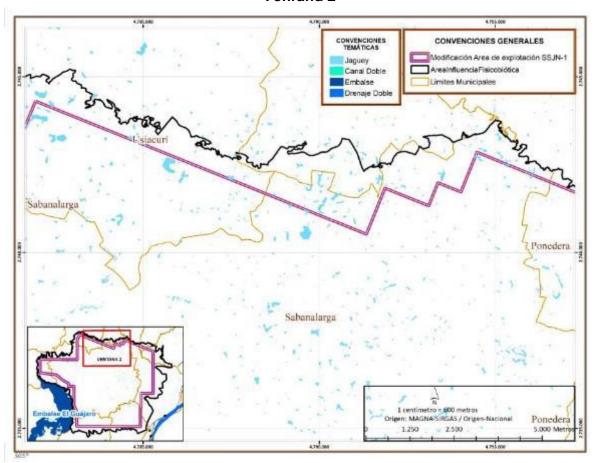
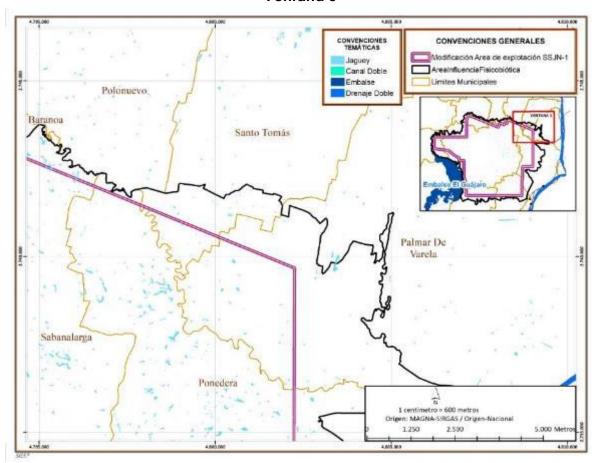
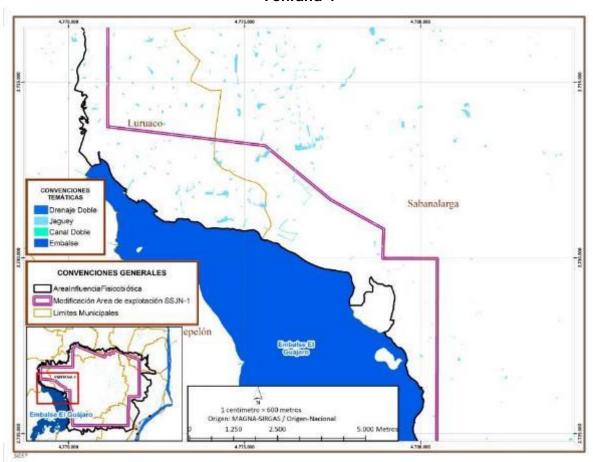

*Coordenadas de toma: 4778049 E, 2728910 N Fuente: SGS Colombia, 2021

Figura 3.2.4-2 Sistemas lénticos identificados en el área de influencia fisicobiótica Ventana 1

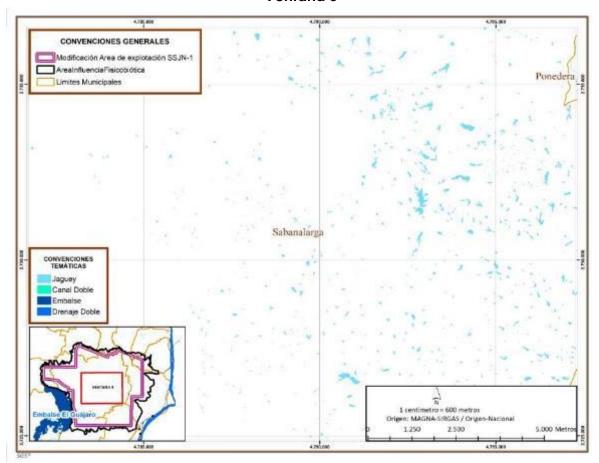
CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO


Figura 3.2.4-3 Sistemas lénticos identificados en el área de influencia fisicobiótica Ventana 2

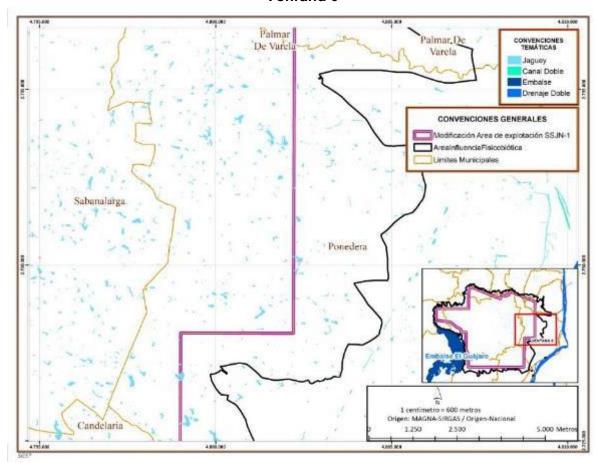
CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO


Figura 3.2.4-4 Sistemas lénticos identificados en el área de influencia fisicobiótica Ventana 3

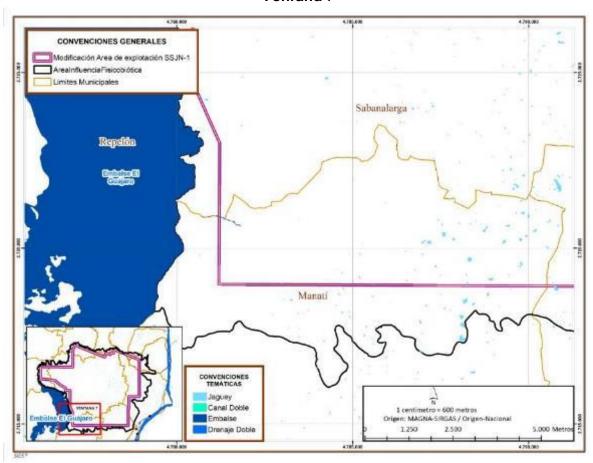
CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO


Figura 3.2.4-5 Sistemas lénticos identificados en el área de influencia fisicobiótica Ventana 4

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO


Figura 3.2.4-6 Sistemas lénticos identificados en el área de influencia fisicobiótica Ventana 5

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO


Figura 3.2.4-7 Sistemas lénticos identificados en el área de influencia fisicobiótica Ventana 6

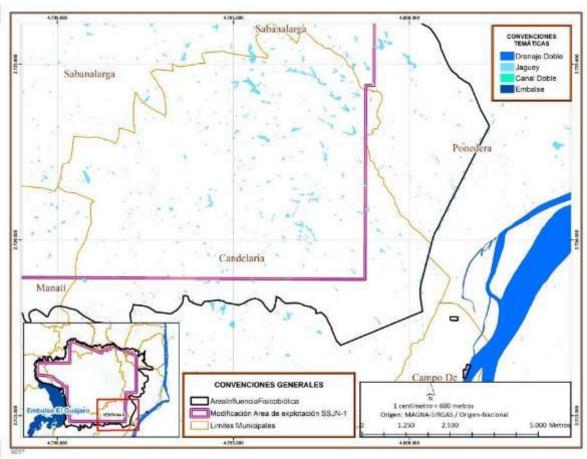
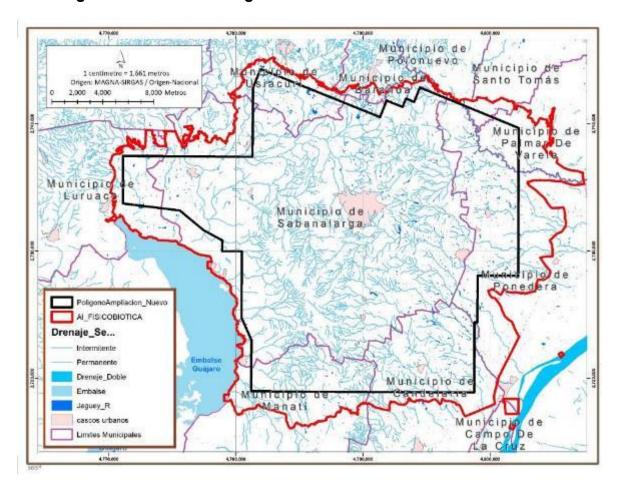

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

Figura 3.2.4-8 Sistemas lénticos identificados en el área de influencia fisicobiótica Ventana 7

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

Figura 3.2.4-9 Sistemas lénticos identificados en el área de influencia fisicobiótica Ventana 8


Fuente: SGS Colombia, 2021

3.2.4.2.2 Sistemas Lóticos

A continuación, se describen los sistemas loticos más representativos correspondientes a las cuencas que drenan sus aguas al río Magdalena o al embalse el Guájaro, en cercanías al proyecto. En la **Figura 3.2.4-10** se muestra la red hidrográfica dentro del área de influencia, encontrando como afluentes principales: río Magdalena, canal del Dique, arroyo Barro (arroyo Mono), arroyo Bejuco, arroyo de Las Piedras, arroyo El Salado, Arroyo Gallego, Arroyo Grande, arroyo Guanábano, arroyo Guayepo, arroyo La Peña, arroyo Leña, arroyo Malavet, arroyo Manga, arroyo Mendoza, arroyo Molinero, arroyo Orijata, arroyo Pantano, arroyo Platanal, arroyo Regolledo 1, arroyo Regolledo 2, arroyo Rico y arroyo Salado.

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

Figura 3.2.4-10 Red hidrográfica en el área de influencia fisicobiótica

Fuente: SGS Colombia, 2021

En "Sistemas Lónticos.xlsx" del Anexo F. Carteras de Campo, información primaria de sustento / Hidrología / Trabajo de Campo se presenta el inventario de corrientes identificadas en campo, mientras a continuación se describen algunas de estas corrientes principales.

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

Río Magdalena a.

Nace en el macizo colombiano en el extremo Suroriental del país, en el páramo las Papas y desemboca en el mar caribe a la altura de Bocas de ceniza. A nivel regional la zona hidrográfica del bajo rio magdalena es una de las más extensas del norte del país, el rio está conformado por un complejo de ciénagas, zonas inundables y humedales en el cual confluyen un gran número de cuerpos de agua. Este cuerpo de agua es una de las principales fuentes hídricas del departamento y recibe directamente aguas de los arroyos Grande, Guanábano y Orijata, y de manera indirecta de los arroyos Barro (Mono), Bejuco, de Las Piedras, Gallego, Leña, NN, NN1, NN2 y NN3. En la Fotografía 3.2.4-2 se presenta una toma representativa del río Magdalena en el municipio de Ponedera.

Fotografía 3.2.4-2 Río Magdalena

*Coordenadas de toma: 4808937 E, 2734878 N Fuente: SGS Colombia, 2021

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

b. Canal del Dique

El canal del Dique se forma como una derivación de caudal del río Magdalena a la altura del municipio de Calamar en Bolívar, y desemboca en la bahía de Cartagena. En la Fotografía 3.2.4-3 se presenta una toma representativa del canal del Dique en inmediaciones del sistema de compuertas Porvenir y su área adyacente.

Fotografía 3.2.4-3 Canal de Dique en compuertas Porvenir

*Coordenadas de toma: 4773018 E, 2709048 N Fuente: SGS Colombia, 2021

Versión No. 1. 07.2022

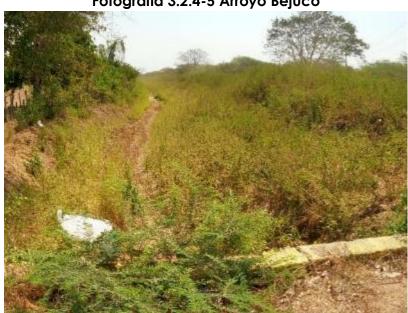
CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

c. Arroyo Barro (arroyo Mono)

Este arroyo drena en dirección NW-SE. Se localiza en la parte sur del área de influencia fisicobiótica en el municipio de Candelaria. Este arroyo aporta sus aguas a un canal doble que descarga en el río Magdalena. En cuanto a su permanencia, es un arroyo intermitente que únicamente transporta agua en temporada de lluvias. En la **Fotografía 3.2.4-4** se presenta una toma representativa del arroyo y su área adyacente.

Fotografía 3.2.4-4 Arroyo Barro (arroyo Mono)

*Coordenadas de toma: 4794512 E, 2718981 N Fuente: SGS Colombia, 2021



Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

d. Arroyo Bejuco

Este arroyo drena en dirección NW-SE. Se localiza en la parte sur del área de influencia fisicobiótica, nace en el municipio de Manatí y finaliza en el municipio de Candelaria. Este arroyo aporta sus aguas a un canal doble que descarga en el río Magdalena. En cuanto a su permanencia, es un arroyo intermitente que únicamente transporta agua en temporada de lluvias. En la Fotografía 3.2.4-5 se presenta una toma representativa del arroyo y su área adyacente.

Fotografía 3.2.4-5 Arroyo Bejuco

*Coordenadas de toma: 4794408 E, 2716427 N Fuente: SGS Colombia, 2021

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

e. Arroyo El Salado

Este arroyo drena en dirección N-S. Se localiza en la parte norte del área de influencia fisicobiótica. Nace en el municipio de Piojó y aguas abajo divide el municipio de Luruaco y Sabanalarga. Este arroyo aporta sus aguas al embalse El Guájaro de manera indirecta, el arroyo finaliza en la zona plana inundable del embalse. En cuanto a su permanencia, es un arroyo intermitente que únicamente transporta agua en temporada de lluvias. En la **Fotografía 3.2.4-6** se presenta una toma representativa del arroyo y su área adyacente.

*Coordenadas de toma: 4788935 E, 2743773 N Fuente: SGS Colombia, 2021

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

f. Arroyo Las Piedras

El arroyo Las Piedras va en dirección NW-SE desde el municipio de Manatí pasando al municipio de Candelaria, particularmente hacia la cabecera municipal. Es decir, se localiza en la parte sur del área de influencia (AI) fisicobiótica. Particularmente, nace dentro del polígono de estudio y drena afuera del AI, este recorrido lo hace en aproximadamente 7.15 km hasta el sitio de cierre de la cuenca aguas abajo del AI físico biótica.

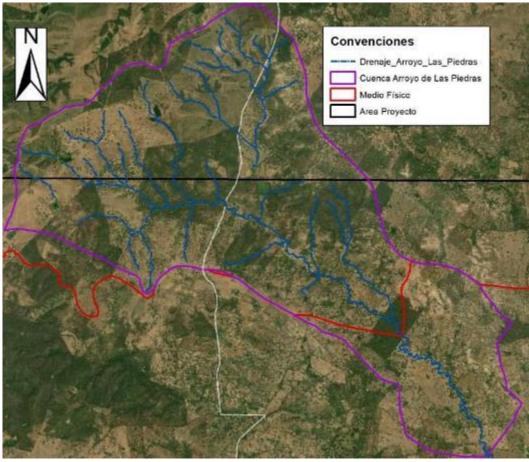


Figura 3.2.4-11 Arroyo Las Piedras

Fuente: SGS Colombia, 2021

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

g. Arroyo Gallego

Este arroyo drena en dirección NW-SE. Se localiza en la parte sur del área de influencia fisicobiótica, nace en el municipio de Sabanalarga y finaliza en el municipio de Candelaria. Este arroyo aporta sus aguas a un canal doble que descarga en el río Magdalena. En cuanto a su permanencia, es un arroyo intermitente que únicamente transporta agua en temporada de lluvias. En la **Fotografía 3.2.4-7** se presenta una toma representativa del arroyo y su área adyacente.

Fotografía 3.2.4-7 Arroyo Gallego

*Coordenadas de toma: 4795005 E, 2721351 N Fuente: SGS Colombia, 2021

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

h. Arroyo Grande

Este arroyo drena en dirección WNW-ESE. Se localiza en la parte nororiental del área de influencia fisicobiótica, nace en el municipio de Baranoa y discurre con aportes de Usiacurí y Sabanalarga hasta su parte media baja donde sirve como límite municipal entre Ponedera y Polonuevo, Palmar de Varela y Santo Tomás. El arroyo Grande tiene como mayor afluente el arroyo Manga que se localiza en su vertiente sur. El arroyo aporta sus aguas directamente al río Magdalena. En cuanto a su permanencia, es un arroyo intermitente que únicamente transporta agua en temporada de Iluvias. En la Fotografía 3.2.4-8 se presenta una toma representativa del arroyo y su área adyacente.

Fotografía 3.2.4-8 Arroyo Grande

*Coordenadas de toma: 4797881 E, 2741439 N Fuente: SGS Colombia, 2021

Versión No. 1. 07.2022

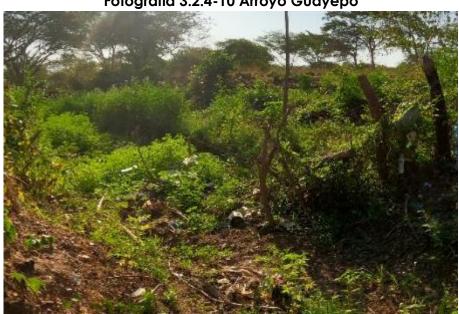
CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

i. Arroyo Guanábano

Este arroyo drena en dirección WNW-ESE. Se localiza en la parte oriental del área de influencia fisicobiótica, nace en el municipio de Sabanalarga y finaliza en Ponedera. Este arroyo aporta sus aguas al río Magdalena. En cuanto a su permanencia, es un arroyo intermitente que únicamente transporta agua en temporada de lluvias. En la **Fotografía 3.2.4-9** se presenta una toma representativa del arroyo y su área adyacente.

Fotografía 3.2.4-9 Arroyo Guanábano

*Coordenadas de toma: 4801415 E, 27215515 N Fuente: SGS Colombia, 2021



Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

j. Arroyo Guayepo

Este arroyo drena en dirección W-E. Se localiza en la parte oriental del área de influencia fisicobiótica, nace en el municipio de Sabanalarga y finaliza en Ponedera. Este arroyo aporta sus aguas al río Magdalena. En cuanto a su permanencia, es un arroyo intermitente que únicamente transporta agua en temporada de lluvias. En la **Fotografía 3.2.4-10** se presenta una toma representativa del arroyo y su área adyacente.

Fotografía 3.2.4-10 Arroyo Guayepo

*Coordenadas de toma: 4798750 E, 2730728 N Fuente: SGS Colombia, 2021



Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

k. Arroyo La Peña

Este arroyo drena en dirección E-W. Se localiza en la parte occidental del área de influencia fisicobiótica, discurre en su totalidad en el municipio de Sabanalarga. Este arroyo aporta sus aguas al embalse El Guájaro. En cuanto a su permanencia, es un arroyo intermitente que únicamente transporta agua en temporada de lluvias. En la Fotografía 3.2.4-11 se presenta una toma representativa del arroyo y su área adyacente.

Fotografía 3.2.4-11 Arroyo La Peña

*Coordenadas de toma: 4781276 E, 2724668 N Fuente: SGS Colombia, 2021

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

Arroyo Leña

Este arroyo drena en dirección NW-SE. Se localiza en la parte suroriental del área de influencia fisicobiótica, nace en el municipio de Sabanalarga en inmediaciones del límite con Manatí, y discurre en su parte media y baja en Candelaria. Este arroyo aporta sus aguas a un canal doble que desemboca en el río Magdalena. En cuanto a su permanencia, es un arroyo intermitente que únicamente transporta agua en temporada de lluvias. En la **Fotografía 3.2.4-12** se presenta una toma representativa del arroyo y su área adyacente.

*Coordenadas de toma: 4794547 E, 2719806 N Fuente: SGS Colombia, 2021

Versión No. 1. 07.2022

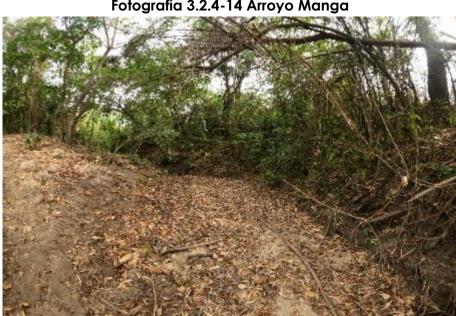
CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

m. Arroyo Malavet

Este arroyo drena en dirección N-S. Se localiza en la parte sur del área de influencia fisicobiótica, discurre en su totalidad en el municipio de Manatí. Este arroyo aporta sus aguas al arroyo Pantano, el cual desemboca finalmente en el embalse El Guájaro. En cuanto a su permanencia, es un arroyo intermitente que únicamente transporta agua en temporada de lluvias. En la **Fotografía 3.2.4-13** se presenta una toma representativa del arroyo y su área adyacente.

Fotografía 3.2.4-13 Arroyo Malavet

*Coordenadas de toma: 4785415 E, 2716285 N Fuente: SGS Colombia, 2021



Versión No. 1. 07.2022

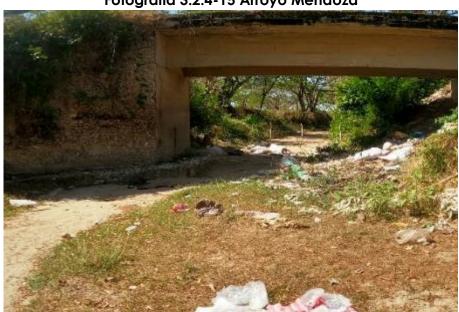
CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

n. Arroyo Manga

Este arroyo drena en dirección W-E. Se localiza íntegramente dentro del polígono de desarrollo en el sector nororiental. Nace en el municipio de Sabanalarga y descarga en el municipio de Ponedera. Este arroyo aporta sus aguas al arroyo Grande, este a su vez desemboca directamente en el río Magdalena. En cuanto a su permanencia, es un arroyo intermitente que únicamente transporta agua en temporada de Iluvias. En la **Fotografía 3.2.4-14** se presenta una toma representativa del arroyo y su área adyacente.

Fotografía 3.2.4-14 Arroyo Manga

*Coordenadas de toma: 4797246 E, 2735859 N Fuente: SGS Colombia, 2021



Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

o. Arroyo Mendoza

Este arroyo drena en dirección E-W. Se localiza en la parte oriental del área de influencia fisicobiótica, discurre en su totalidad en el municipio de Sabanalarga. Este arroyo aporta sus aguas directamente al embalse El Guájaro. En cuanto a su permanencia, es un arroyo intermitente que únicamente transporta agua en temporada de lluvias. En la **Fotografía 3.2.4-15** se presenta una toma representativa del arroyo y su área adyacente.

Fotografía 3.2.4-15 Arroyo Mendoza

*Coordenadas de toma: 4779905 E, 2727874 N Fuente: SGS Colombia, 2021



Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

Arroyo Molinero p.

Este arroyo drena en dirección N-S. Discurre en el sector occidental del área de influencia fisicobiótica, nace en el municipio de Piojó y recibe aportes provenientes de Usiacurí en la parte alta, la parte media y baja del arroyo discurren en el municipio de Sabanalarga. Sus principales afluentes son el arroyo Platanal y el arroyo Salado, que se localizan en la vertiente oriental. Este arroyo aporta sus aguas al embalse El Guájaro. En cuanto a su permanencia, es un arroyo intermitente que únicamente transporta agua en temporada de lluvias. En la Fotografía 3.2.4-16 se presenta una toma representativa del arroyo y su área adyacente.

*Coordenadas de toma: 4777429 E, 2736274 N

Fuente: SGS Colombia, 2021



Versión No. 1. 07.2022

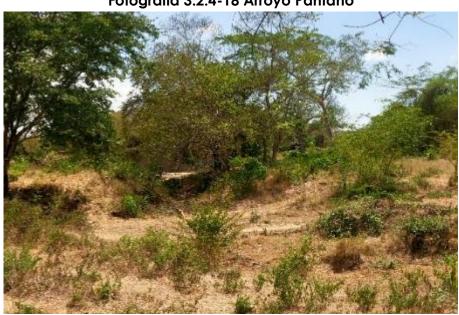
CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

q. Arroyo Orijata

Este arroyo drena en dirección NW-SE. Se localiza en la parte oriental del área de influencia fisicobiótica, inicia en el municipio Sabanalarga y en su parte media-baja es el límite municipal entre Candelaria y Ponedera, finalmente descarga en el río Magdalena. En cuanto a su permanencia, es un arroyo intermitente que únicamente transporta agua en temporada de lluvias. En la **Fotografía 3.2.4-17** se presenta una toma representativa del arroyo y su área adyacente.

Fotografía 3.2.4-17 Arroyo Orijata

*Coordenadas de toma: 4801666 E, 2719577 N Fuente: SGS Colombia, 2021



Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

r. Arroyo Pantano

Este arroyo drena en dirección N-S. Se localiza en la parte sur del área de influencia fisicobiótica. La cabecera del arroyo se localiza en el municipio Sabanalarga y de allí en adelante trascurre en Manatí. Este arroyo en su parte baja vira al occidente y descarga en el embalse El Guájaro. En cuanto a su permanencia, es un arroyo intermitente que únicamente transporta agua en temporada de lluvias. En la **Fotografía 3.2.4-18** se presenta una toma representativa del arroyo y su área adyacente.

Fotografía 3.2.4-18 Arroyo Pantano

*Coordenadas de toma: 4787959 E, 2719292 N Fuente: SGS Colombia, 2021

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

s. Arroyo Platanal

Este arroyo drena en dirección N-S hasta la parte central, donde vira al occidente hasta su desembocadura en el arroyo Molinero. Se localiza en la parte norte y central del área de influencia fisicobiótica. Inicia en el municipio de Usiacurí Baranoa y su parte media y baja discurre en el municipio de Sabanalarga. Este arroyo aporta sus aguas al arroyo Molinero. En cuanto a su permanencia, es un arroyo intermitente que únicamente transporta agua en temporada de lluvias. En la **Fotografía 3.2.4-19** se presenta una toma representativa del arroyo y su área adyacente.

*Coordenadas de toma: 4780385 E, 2737560 N Fuente: SGS Colombia, 2021

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

t. Arroyo Regolledo 1

Este arroyo drena en dirección E-W. Se localiza en la parte oriental del área de influencia fisicobiótica. Discurre en su totalidad en el municipio Sabanalarga. Este arroyo aporta sus aguas directamente al embalse El Guájaro. En cuanto a su permanencia, es un arroyo permanente que es de importancia para la comunidad de La Aguada de Pablo porque es uno de los tres únicos arroyos permanentes existentes en la vía que conduce a La Peña (Regollego 1, Regolledo 2 y Obispo). En la **Fotografía 3.2.4-20** se presenta una toma representativa del arroyo y su área adyacente.

Fotografía 3.2.4-20 Arroyo Regolledo 1

*Coordenadas de toma: 4780876 E, 2722786 N Fuente: SGS Colombia, 2021

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

u. Arroyo Regolledo 2

Este arroyo drena en dirección E-W. Se localiza en la parte oriental del área de influencia fisicobiótica. Discurre en su totalidad en el municipio de Sabanalarga. Este arroyo aporta sus aguas directamente al embalse El Guájaro. En cuanto a su permanencia, es un arroyo permanente que es de importancia para la comunidad de La Aguada de Pablo porque es uno de los tres únicos arroyos permanentes existentes en la vía que conduce a La Peña (Regollego 1, Regolledo 2 y Obispo). En la **Fotografía 3.2.4-21** se presenta una toma representativa del arroyo y su área adyacente.

*Coordenadas de toma: 4780936 E, 2722971 N Fuente: SGS Colombia, 2021

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

v. Arroyo Rico

Este arroyo drena en dirección N-S en su cabecera y rápidamente vira al occidente para configurar una dirección E-W hasta su desembocadura. Se localiza en la parte suroccidental del área de influencia fisicobiótica. Inicia en el municipio Manatí y en la parte media y baja es el límite municipal entre Sabanalarga y Manatí. Este arroyo aporta sus aguas al embalse El Guájaro. En cuanto a su permanencia, es un arroyo intermitente que únicamente transporta agua en temporada de lluvias. En la **Fotografía 3.2.4-22** se presenta una toma representativa del arroyo y su área adyacente.

Fotografía 3.2.4-22 Arroyo Rico

*Coordenadas de toma: 4780380 E, 2721070 N Fuente: SGS Colombia, 2021

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

w. Arroyo Salado

Este arroyo drena en dirección S-N desde su cabecera hasta la parte central, desde donde vira hacia el occidente hasta su parte baja donde cambia su curso hacia el sur hasta su desembocadura. Se localiza en la parte occidental del área de influencia fisicobiótica. Discurre en su totalidad en el municipio Sabanalarga Este arroyo aporta sus aguas al arroyo Molinero. En cuanto a su permanencia, es un arroyo intermitente que únicamente transporta agua en temporada de lluvias. En la **Fotografía 3.2.4-23** se presenta una toma representativa del arroyo y su área adyacente.

Fotografía 3.2.4-23 Arroyo Salado

*Coordenadas de toma: 4768868 E, 2737905 N Fuente: SGS Colombia, 2021

3.2.4.3 Cuencas presentes en el área de influencia fisicobiótica

Se realizó la identificación de las unidades hidrográficas presentes en el área de influencia del proyecto, atendiendo a la zonificación y codificación de las unidades hidrográficas e hidrogeológicas de Colombia (IDEAM, 2013), que acogen en el artículo 4º del Decreto 1640 del 2012, a partir del cual se adopta la zonificación hidrográfica del IDEAM para la planificación, ordenación y manejo de cuencas hidrográficas y acuíferos, fundamentada en la ordenación de las corrientes a nivel nacional, la cual define una codificación de unidades hidrográficas por medio de una metodología de llave primaria y llave foránea, donde refiere a una

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

clasificación de área y zona hidrográfica como se muestra en la **Tabla 3.2.4-3** con la respectiva jerarquía de los principales drenajes del área de estudio.

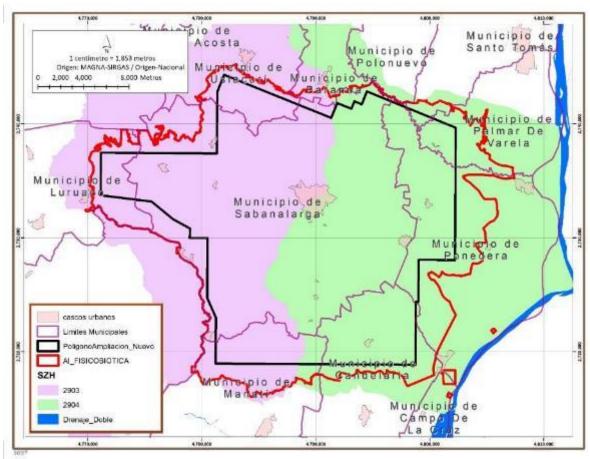
A partir de un escenario nacional general (cuencas de orden 1-según IDEAM) hasta un nivel de clasificación más detallado (cuenca orden 3, 4 o 5 según IDEAM). En la **Figura 3.2.4-12** se presenta la subzona hidrográfica asociada al área de influencia físico biótica y en la **Figura 3.2.4-13** se muestran las cuencas hidrográficas asociadas al proyecto.

Se realiza un trazado de un total de 33 subcuencas que se sustentan en su proximidad con el área de influencia física. La proximidad se presenta de tres maneras: una es que nace y desemboca dentro del área de influencia, nace y drena afuera del área de influencia y la tercera que nace afuera y desemboca adentro del área de influencia, es decir, que, en cualquiera de los casos, la subcuenca se encuentra con algún porcentaje de área dentro del AI.

Tabla 3.2.4-3 Clasificación de las cuencas en el área de estudio

ZH	SZH	CODIGO	CUENCA	CODIGO	SUBCUENCA
29 - Bajo Magdalena	2903 - Canal del Dique margen derecha	2903-16	Humedales Canal Dique y Guájaro	2903-16-01	Espejo de agua Embalse El Guájaro (EAEEG)
		2903-01	Norte Embalse Guájaro	2903-01-11	Afluente NN al Embalse El Guájaro (ANN-EEG)
				2903-01-08	Afluente NN1 al Embalse El Guájaro (ANN1-EEG)
				2903-01-03	Afluente NN2 al Embalse El Guájaro (ANN2-EEG)
				2903-01-01	Afluente NN3 al Embalse El Guájaro (ANN3-EEG)
				2903-01-10	Arroyo El Salado (AES)
				2903-01-06	Arroyo La Peña (ALP)
				2903-01-07	Arroyo Mendoza (AM)
				2903-01-09	Arroyo Molinero (AMO)
				2903-01-14	Arroyo Platanal (APL)
				2903-01-04	Arroyo Regolledo 1 (AR1)
				2903-01-05	Arroyo Regolledo 2 (AR2)
				2903-01-02	Arroyo Rico (AR)
				2903-01-13	Arroyo Salado (AS)
				2903-01-12	Directos al embalse El guájaro (DEEG)
		2903-02	Oriental Embalse Guájaro y Canal del Dique	2903-02-02	Arroyo Malavet (AMA)
				2903-02-03	Arroyo NN4 (ANN4)
				2903-02-04	Arroyo NN5 (ANN5)
				2903-02-01	Arroyo Pantano (AP)
	290	2904		2904-99-10	Arroyo Barro (Arroyo Mono) (AB (AM))

Versión No. 1. 07.2022


CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

ZH	SZH	CODIGO	CUENCA	CODIGO	SUBCUENCA
			Directos río Magdalena entre Calamar y Desembocadura	2904-99-11	Arroyo Bejuco (AB)
				2904-99-13	Arroyo de Las Piedras (ADLP)
				2904-99-08	Arroyo Gallego (AGA)
				2904-99-01	Arroyo Grande (AGR)
				2904-99-06	Arroyo Guanábano (AGU)
				2904-99-02	Arroyo Guayepo (AG)
				2904-99-09	Arroyo Leña (AL)
				2904-99-16	Arroyo Manga (AMAN)
				2904-99-03	Arroyo NN (ANN)
				2904-99-07	Arroyo NN1 (ANN1)
				2904-99-13	Arroyo NN3 (ANN3)
				2904-99-06	Arroyo Orijata (AO)
				2904-99-05	Directos al Río Magdalena (DRM)

Fuente: SGS Colombia, 2021

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

Figura 3.2.4-12 Subzona hidrográfica asociada al proyecto

Fuente: SGS Colombia, 2021

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

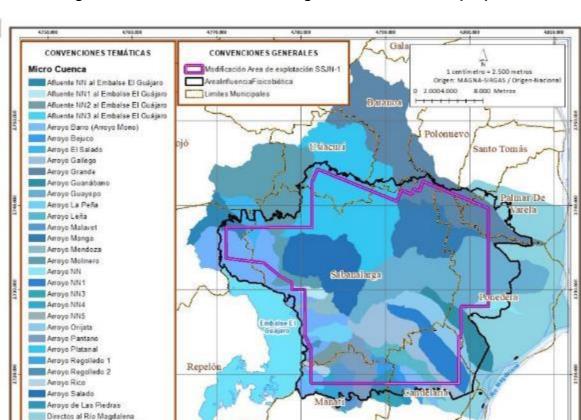


Figura 3.2.4-13 Subcuencas hidrográficas asociadas al proyecto

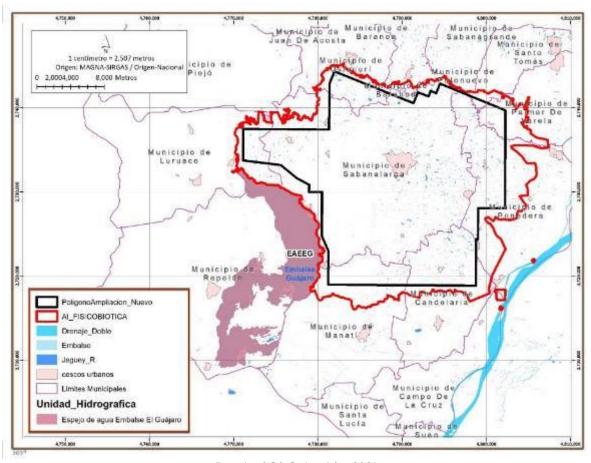
Fuente: SGS Colombia, 2021

Campo De Campo De

La Cruz

A continuación, se presentan las subcuencas dentro del área de estudio de manera individual, para analizar el porcentaje de estas en el área de influencia fisicobiótica.

3.2.4.3.1 Subcuenca Espejo de agua Embalse El Guájaro (EAEEG)


La subcuenca del Espejo de agua Embalse El Guájaro tiene un área total de 11.290,76 Ha, corresponde al 0,04% del área de influencia con un área dentro de esta de 27,74 Ha. En la **Figura 3.2.4-14** se muestra la subcuenca respecto al área de influencia.

Directos al embalse El guájaro

Espejo de agua Embalse El Guajaro

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

Figura 3.2.4-14 Subcuenca Espejo de gua Embalse El Guájaro

Fuente: SGS Colombia, 2021

3.2.4.3.2 Subcuenca Afluente NN al Embalse El Guájaro (ANN-EEG)

La subcuenca Afluente NN al Embalse el Guájaro tiene un área total de 1.709,14 Ha, corresponde al 0,65% del área de influencia con un área dentro de esta de 439,42 Ha. En la **Figura 3.2.4-15** se muestra la subcuenca respecto al área de influencia.

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

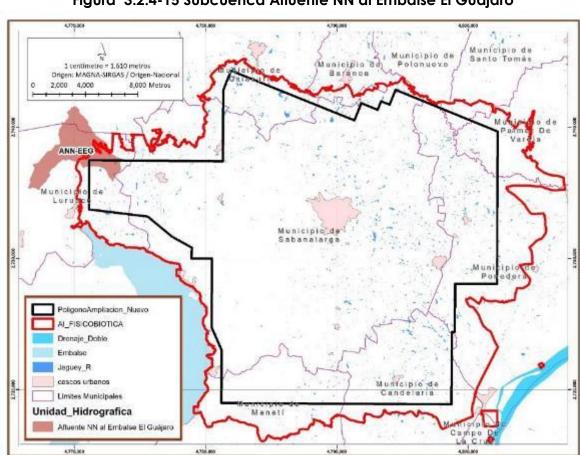


Figura 3.2.4-15 Subcuenca Afluente NN al Embalse El Guájaro

Fuente: SGS Colombia, 2021

3.2.4.3.3 Subcuenca Afluente NN1 al Embalse El Guájaro (ANN1-EEG)

La subcuenca Afluente NN1 al Embalse el Guájaro tiene un área total de 392,67 Ha, corresponde al 0,58% del área de influencia con un área dentro de esta de 392,51 Ha. En la **Figura 3.2.4-16** se muestra la subcuenca respecto al área de influencia.

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

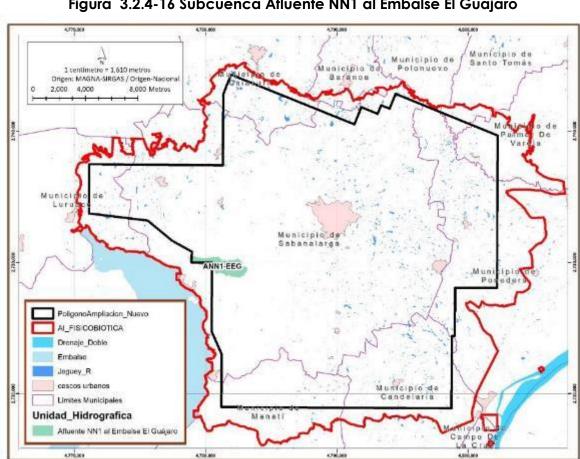


Figura 3.2.4-16 Subcuenca Afluente NN1 al Embalse El Guájaro

Fuente: SGS Colombia, 2021

3.2.4.3.4 Subcuenca Afluente NN2 al Embalse El Guájaro (ANN2-EEG)

La subcuenca Afluente NN2 al Embalse el Guájaro tiene un área total de 780,08 Ha, corresponde al 1,15% del área de influencia con un área dentro de esta de 779,74 Ha. En la **Figura 3.2.4-17** se muestra la subcuenca respecto al área de influencia.

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

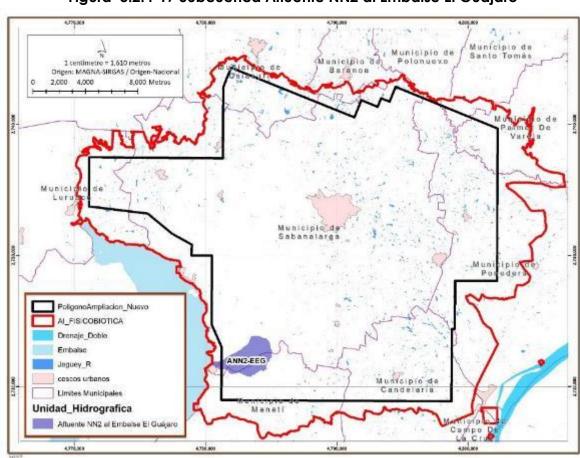


Figura 3.2.4-17 Subcuenca Afluente NN2 al Embalse El Guájaro

Fuente: SGS Colombia, 2021

3.2.4.3.5 Subcuenca Afluente NN3 al Embalse El Guájaro (ANN3-EEG)

La subcuenca Afluente NN3 al Embalse el Guájaro tiene un área total de 224,36 Ha, corresponde al 0,33% del área de influencia con un área dentro de esta de 224,27 Ha. En la **Figura 3.2.4-18** se muestra la subcuenca respecto al área de influencia.

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

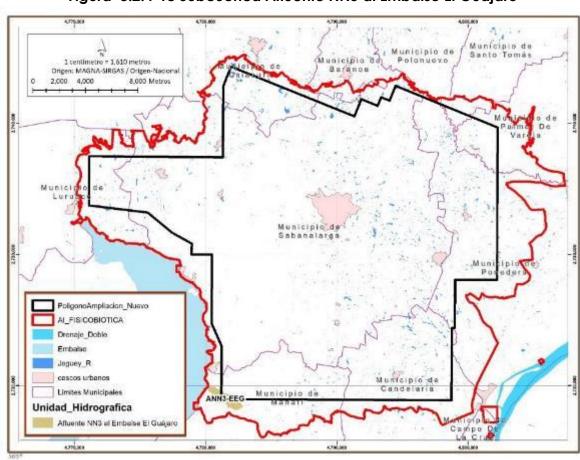


Figura 3.2.4-18 Subcuenca Afluente NN3 al Embalse El Guájaro

Fuente: SGS Colombia, 2021

3.2.4.3.6 Subcuenca Arroyo El Salado (AES)

La subcuenca Arroyo El Salado tiene un área total de 1.412,17 Ha, corresponde al 0,96% del área de influencia con un área dentro de esta de 651,18 Ha. En la **Figura 3.2.4-19** se muestra la subcuenca respecto al área de influencia.

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

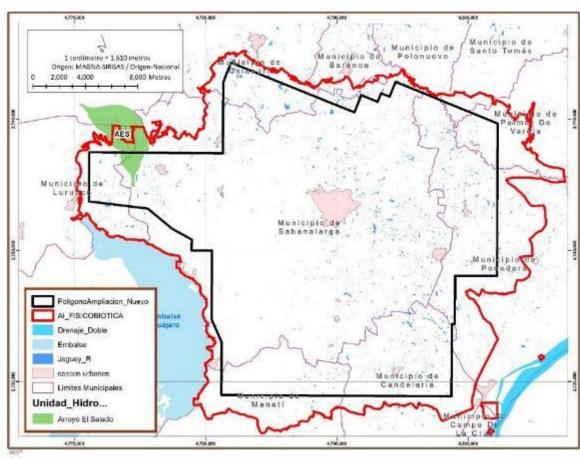


Figura 3.2.4-19 Subcuenca Arroyo El Salado

Fuente: SGS Colombia, 2021

3.2.4.3.7 Subcuenca Arroyo La Peña (ALP)

La subcuenca Arroyo la Peña tiene un área total de 865,86 Ha, corresponde al 1,28% del área de influencia con un área dentro de esta de 865,48 Ha. En la **Figura 3.2.4-20** se muestra la subcuenca respecto al área de influencia.

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

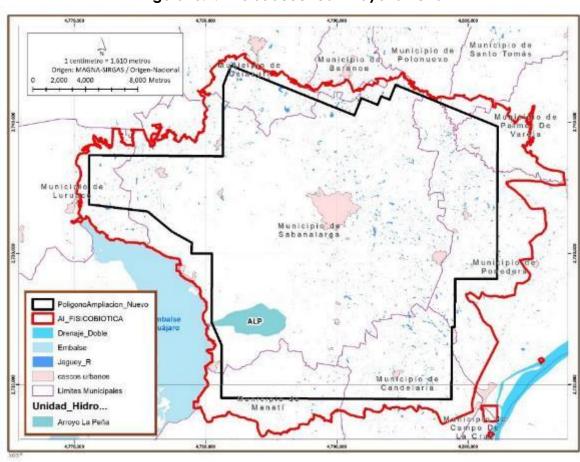


Figura 3.2.4-20 Subcuenca Arroyo la Peña

Fuente: SGS Colombia, 2021

3.2.4.3.8 Subcuenca Arroyo Mendoza (AM)

La subcuenca Arroyo Mendoza tiene un área total de 667,10 Ha, corresponde al 0,98% del área de influencia con un área dentro de esta de 666,81 Ha. En la **Figura 3.2.4-21** se muestra la subcuenca respecto al área de influencia.

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

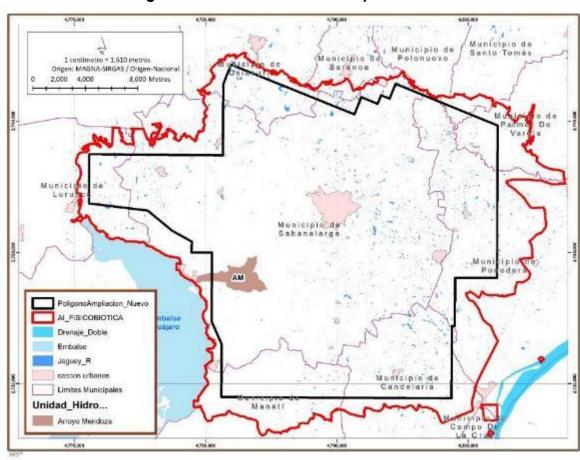


Figura 3.2.4-21 Subcuenca Arroyo Mendoza

Fuente: SGS Colombia, 2021

3.2.4.3.9 Subcuenca Arroyo Molinero (AMO)

La subcuenca Arroyo Molinero tiene un área total de 29.129,55 Ha, corresponde al 3,18% del área de influencia con un área dentro de esta de 2.157,34 Ha. En la **Figura 3.2.4-22** se muestra la subcuenca respecto al área de influencia.

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

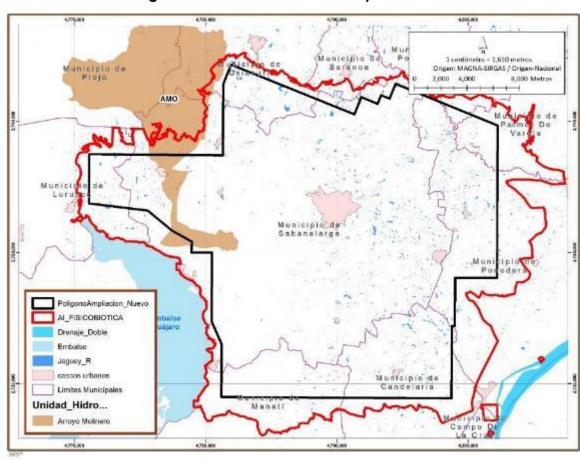


Figura 3.2.4-22 Subcuenca Arroyo Molinero

Fuente: SGS Colombia, 2021

3.2.4.3.10 Subcuenca Arroyo Platanal (APL)

La subcuenca Arroyo Platanal tiene un área total de 14.472,94 Ha, corresponde al 14,73% del área de influencia con un área dentro de esta de 9.981,33 Ha. En la **Figura 3.2.4-23** se muestra la subcuenca respecto al área de influencia.

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

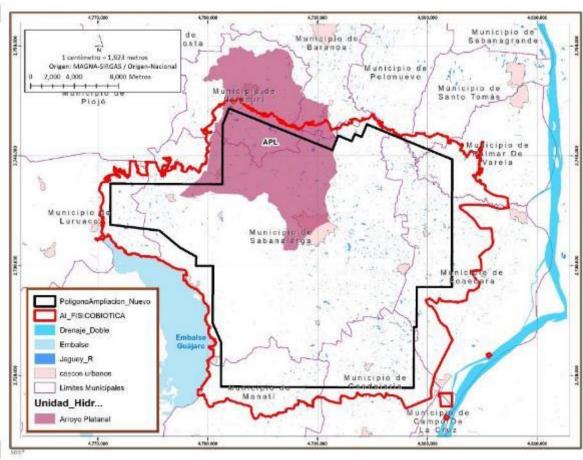


Figura 3.2.4-23 Subcuenca Arroyo Platanal

Fuente: SGS Colombia, 2021

3.2.4.3.11 Subcuenca Arroyo Regolledo 1 (AR1)

La subcuenca Arroyo Regolledo 1 tiene un área total de 32,33 Ha, corresponde al 0,05% del área de influencia con un área dentro de esta de 32,32 Ha. En la **Figura 3.2.4-24** se muestra la subcuenca respecto al área de influencia.

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

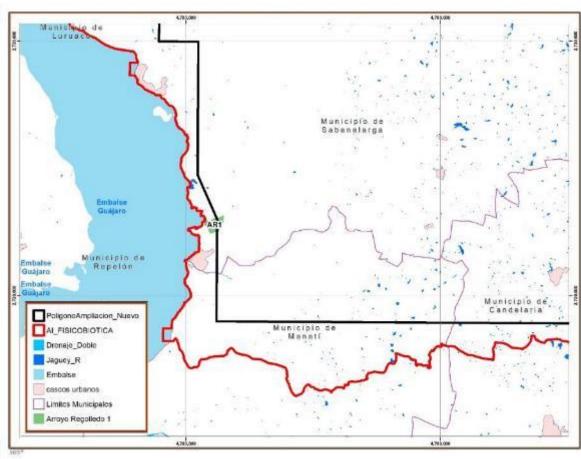


Figura 3.2.4-24 Subcuenca Arroyo Regolledo 1

Fuente: SGS Colombia, 2021

3.2.4.3.12 Subcuenca Arroyo Regolledo 2 (AR2)

La subcuenca Arroyo Regolledo 2 tiene un área total de 97,94 Ha, corresponde al 0,14% del área de influencia con un área dentro de esta de 97,90 Ha. En la **Figura 3.2.4-25** se muestra la subcuenca respecto al área de influencia.

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

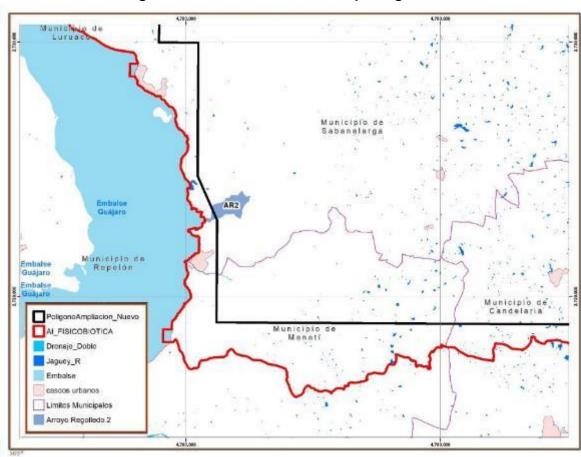


Figura 3.2.4-25 Subcuenca Arroyo Regolledo 2

Fuente: SGS Colombia, 2021

3.2.4.3.13 Subcuenca Arroyo Rico (AR)

La subcuenca Arroyo Rico tiene un área total de 293,14 Ha, corresponde al 0,43% del área de influencia con un área dentro de esta de 293,02 Ha. En la **Figura 3.2.4-26** se muestra la subcuenca respecto al área de influencia.

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

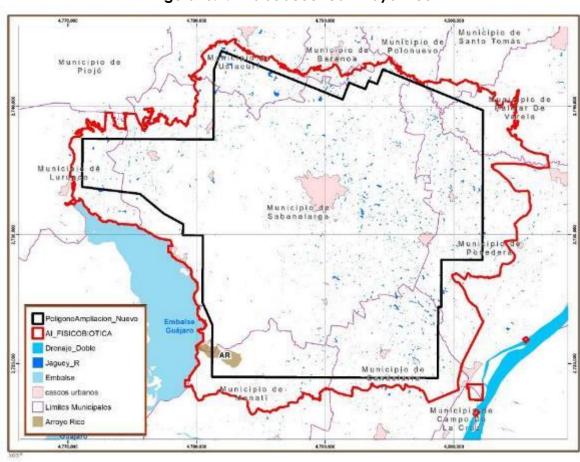


Figura 3.2.4-26 Subcuenca Arroyo Rico

Fuente: SGS Colombia, 2021

3.2.4.3.14 Subcuenca Arroyo Salado (AS)

La subcuenca Arroyo Salado tiene un área total de 5.677,62 Ha, corresponde al 8,37% del área de influencia con un área dentro de esta de 5.675,15 Ha. En la **Figura 3.2.4-27** se muestra la subcuenca respecto al área de influencia.

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

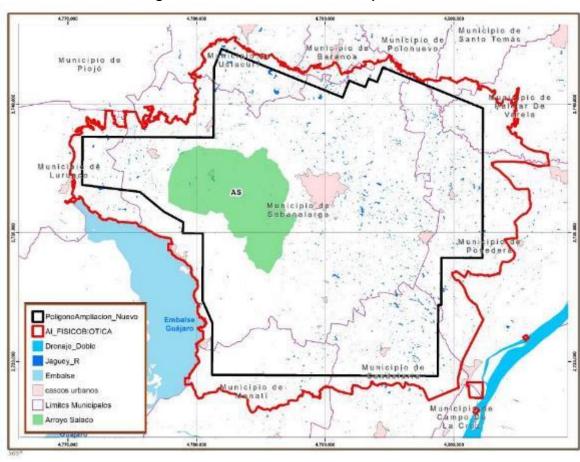


Figura 3.2.4-27 Subcuenca Arroyo Salado

Fuente: SGS Colombia, 2021

3.2.4.3.15 Subcuenca Directos al embalse El Guájaro (DEEG)

La subcuenca de Directos al embalse El Guájaro tiene un área total de 7.590,32 Ha, corresponde al 9,39% del área de influencia con un área dentro de esta de 6.363,91 Ha, para esta subcuenca está integrada por 7 microcuencas. En la **Figura 3.2.4-28** se muestra la subcuenca respecto al área de influencia.

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

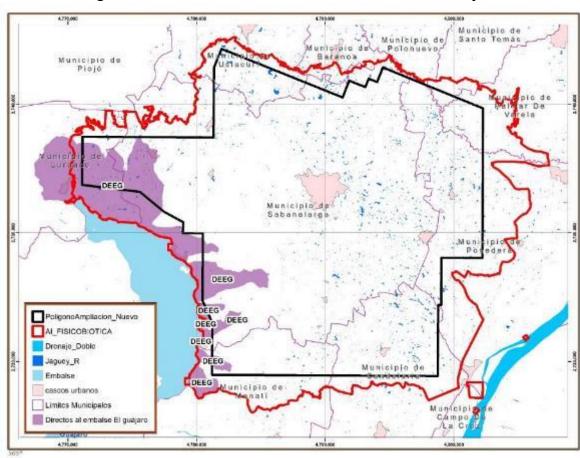


Figura 3.2.4-28 Subcuenca Directos al embalse El Guájaro

Fuente: SGS Colombia, 2021

3.2.4.3.16 Subcuenca Arroyo Malavet (AMA)

La subcuenca Arroyo Malavet tiene un área total de 1.065,07 Ha, corresponde al 1,44% del área de influencia con un área dentro de esta de 978,89 Ha. En la **Figura 3.2.4-29** se muestra la subcuenca respecto al área de influencia.

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

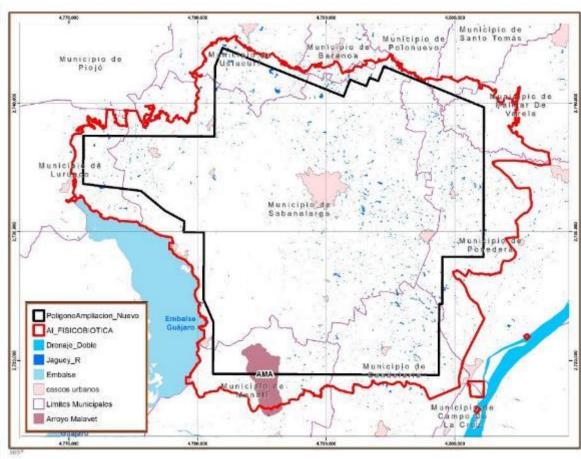


Figura 3.2.4-29 Subcuenca Arroyo Malavet

Fuente: SGS Colombia, 2021

3.2.4.3.17 Subcuenca Arroyo NN4 (ANN4)

La subcuenca Arroyo NN4 tiene un área total de 548,64 Ha, corresponde al 0,75% del área de influencia con un área dentro de esta de 507,23 Ha. En la **Figura 3.2.4-30** se muestra la subcuenca respecto al área de influencia.

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

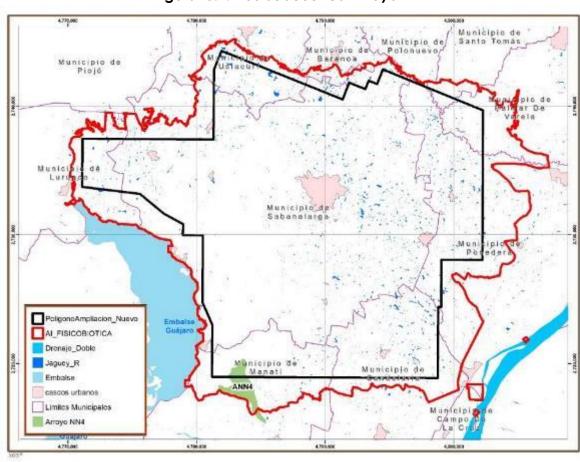


Figura 3.2.4-30 Subcuenca Arroyo NN4

Fuente: SGS Colombia, 2021

3.2.4.3.18 Subcuenca Arroyo NN5 (ANN5)

La subcuenca Arroyo NN5 tiene un área total de 174,88 Ha, corresponde al 0,04% del área de influencia con un área dentro de esta de 27,40 Ha. En la **Figura 3.2.4-31** se muestra la subcuenca respecto al área de influencia.

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

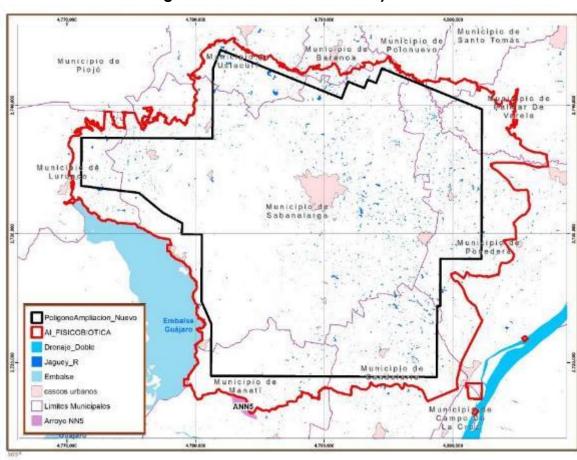


Figura 3.2.4-31 Subcuenca Arroyo NN5

Fuente: SGS Colombia, 2021

3.2.4.3.19 Subcuenca Arroyo Pantano (AP)

La subcuenca Arroyo Pantano tiene un área total de 2.115,15 Ha, corresponde al 3,02% del área de influencia con un área dentro de esta de 2.044,44 Ha. En la **Figura 3.2.4-32** se muestra la subcuenca respecto al área de influencia.

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

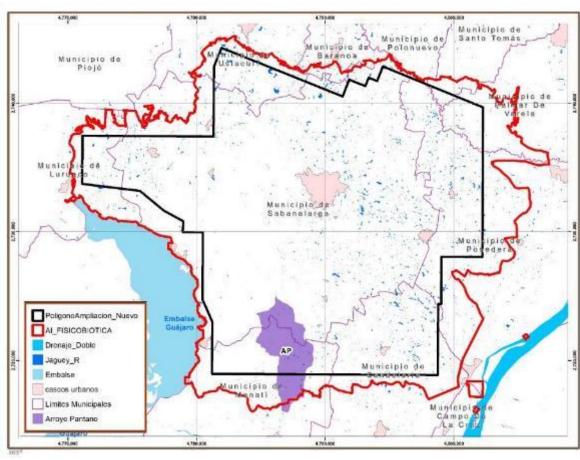


Figura 3.2.4-32 Subcuenca Arroyo Pantano

Fuente: SGS Colombia, 2021

3.2.4.3.20 Subcuenca Arroyo Barro (Arroyo Mono) (AB (AM))

La subcuenca Arroyo Barro tiene un área total de 712,09 Ha, corresponde al 0,70% del área de influencia con un área dentro de esta de 476,61 Ha. En la **Figura 3.2.4-33** se muestra la subcuenca respecto al área de influencia.

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

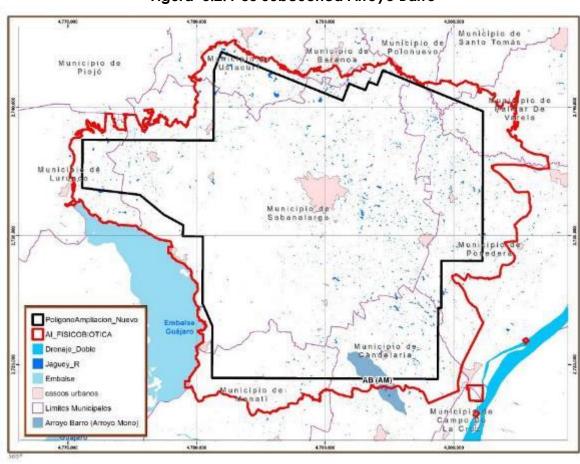


Figura 3.2.4-33 Subcuenca Arroyo Barro

Fuente: SGS Colombia, 2021

3.2.4.3.21 Subcuenca Arroyo Bejuco (AB)

La subcuenca Arroyo Bejuco tiene un área total de 864,84 Ha, corresponde al 1,07% del área de influencia con un área dentro de esta de 728,22 Ha. En la **Figura 3.2.4-34** se muestra la subcuenca respecto al área de influencia.

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

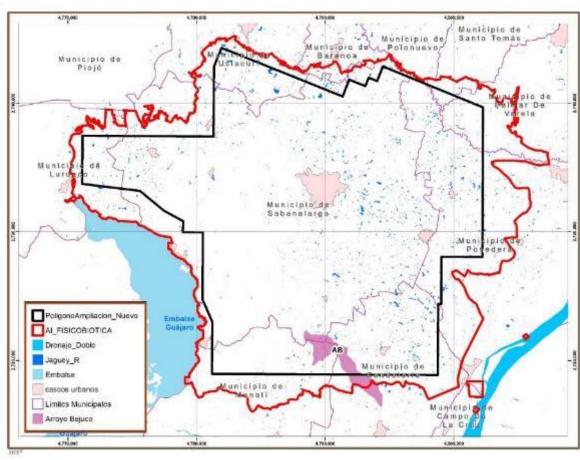


Figura 3.2.4-34 Subcuenca Arroyo Bejuco

Fuente: SGS Colombia, 2021

3.2.4.3.22 Subcuenca Arroyo de Las Piedras (ADLP)

La subcuenca Arroyo de las Piedras tiene un área total de 832,59 Ha, corresponde al 0,97% del área de influencia con un área dentro de esta de 654,37 Ha. En la **Figura 3.2.4-35** se muestra la subcuenca respecto al área de influencia.

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

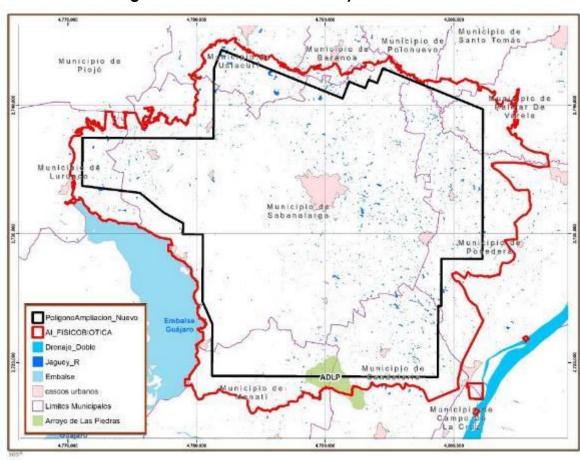


Figura 3.2.4-35 Subcuenca Arroyo de las Piedras

Fuente: SGS Colombia, 2021

3.2.4.3.23 Subcuenca Arroyo Gallego (AGA)

La subcuenca Arroyo Gallego tiene un área total de 3.678,35 Ha, corresponde al 5,42% del área de influencia con un área dentro de esta de 3.676,43 Ha. En la **Figura 3.2.4-36** se muestra la subcuenca respecto al área de influencia.

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

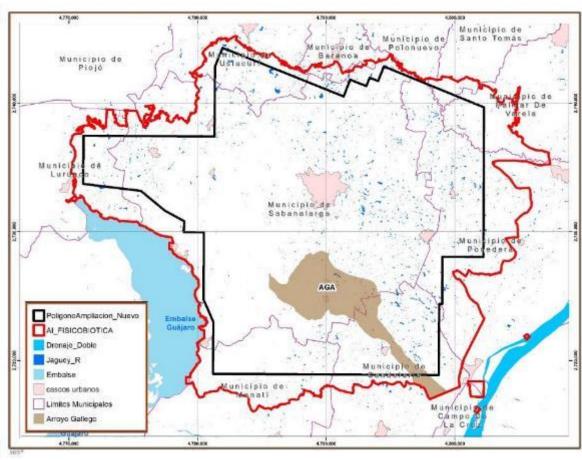


Figura 3.2.4-36 Subcuenca Arroyo Gallego

Fuente: SGS Colombia, 2021

3.2.4.3.24 Subcuenca Arroyo Grande (AGR)

La subcuenca Arroyo Grande tiene un área total de 18.528,16 Ha, corresponde al 7,17% del área de influencia con un área dentro de esta de 4.857,91 Ha. En la **Figura 3.2.4-37** se muestra la subcuenca respecto al área de influencia.

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

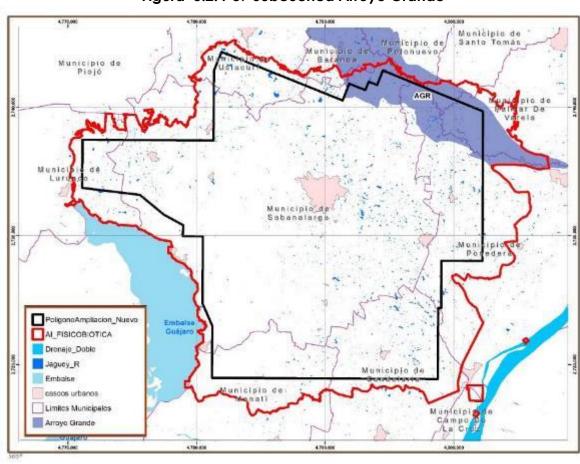


Figura 3.2.4-37 Subcuenca Arroyo Grande

Fuente: SGS Colombia, 2021

3.2.4.3.25 Subcuenca Arroyo Guanábano (AGU)

La subcuenca Arroyo Guanábano tiene un área total de 2.233,73 Ha, corresponde al 2,84% del área de influencia con un área dentro de esta de 1.923,15 Ha. En la **Figura 3.2.4-38** se muestra la subcuenca respecto al área de influencia.

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

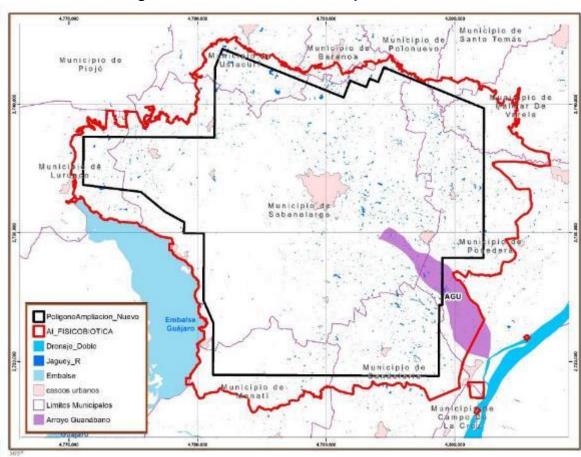


Figura 3.2.4-38 Subcuenca Arroyo Guanábano

Fuente: SGS Colombia, 2021

3.2.4.3.26 Subcuenca Arroyo Guayepo (AG)

La subcuenca Arroyo Guayepo tiene un área total de 11.278,50 Ha, corresponde al 14,69% del área de influencia con un área dentro de esta de 9.954,32 Ha. En la **Figura 3.2.4-39** se muestra la subcuenca respecto al área de influencia.

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

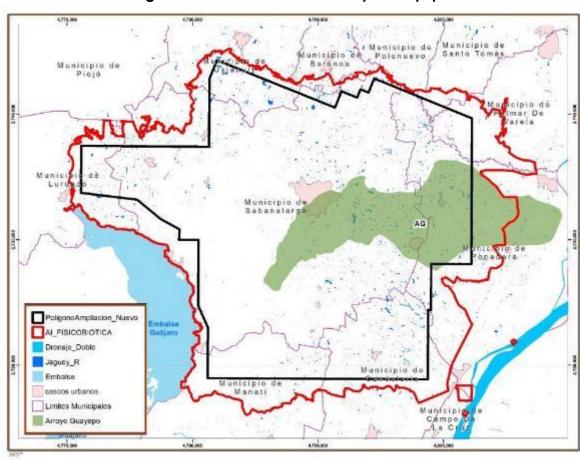


Figura 3.2.4-39 Subcuenca Arroyo Guayepo

Fuente: SGS Colombia, 2021

3.2.4.3.27 Subcuenca Arroyo Leña (AL)

La subcuenca Arroyo Leña tiene un área total de 1.600,86 Ha, corresponde al 2,15% del área de influencia con un área dentro de esta de 1.457,15 Ha. En la **Figura 3.2.4-40** se muestra la subcuenca respecto al área de influencia.

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

Municipio de Polenevo Santo Tomas

Municipio de Santo Tomas

Municipio de Santo Tomas

Al FisicoBioTica

Municipio de Santo Tomas

Municipio de Santo Tomas

Al FisicoBioTica

Municipio de Santo Tomas

Figura 3.2.4-40 Subcuenca Arroyo Leña

Fuente: SGS Colombia, 2021

3.2.4.3.28 Subcuenca Arroyo Manga (AMAN)

La subcuenca Arroyo Manga tiene un área total de 4.560,22 Ha, corresponde al 6,73% del área de influencia con un área dentro de esta de 4.557,67 Ha. En la **Figura 3.2.4-41** se muestra la subcuenca respecto al área de influencia.

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

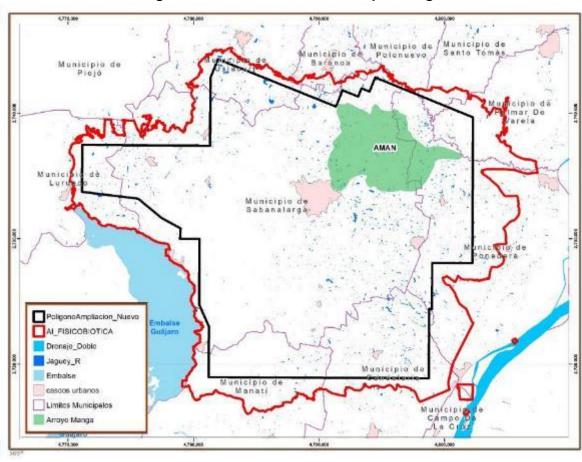


Figura 3.2.4-41 Subcuenca Arroyo Manga

Fuente: SGS Colombia, 2021

3.2.4.3.29 Subcuenca Arroyo NN (ANN)

La subcuenca Arroyo NN tiene un área total de 657,22 Ha, corresponde al 0,83% del área de influencia con un área dentro de esta de 562,13 Ha. En la **Figura 3.2.4-42** se muestra la subcuenca respecto al área de influencia.

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

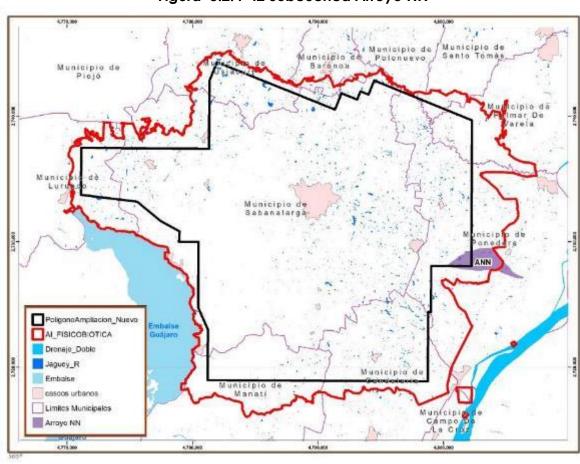


Figura 3.2.4-42 Subcuenca Arroyo NN

Fuente: SGS Colombia, 2021

3.2.4.3.30 Subcuenca Arroyo NN1 (ANN1)

La subcuenca Arroyo NN1 tiene un área total de 2.811,77 Ha se ubica en plenitud dentro del área de influencia y esta área representa el 4,15%. En la **Figura 3.2.4-43** se muestra la subcuenca respecto al área de influencia.

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

Figura 3.2.4-43 Subcuenca Arroyo NN1

Fuente: SGS Colombia, 2021

3.2.4.3.31 Subcuenca Arroyo NN3 (ANN3)

La subcuenca Arroyo NN3 tiene un área total de 522,74 Ha, corresponde al 0,17% del área de influencia con un área dentro de esta de 116,09 Ha. En la **Figura 3.2.4-44** se muestra la subcuenca respecto al área de influencia.

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

Municipio de Sante Tomás

Municipio de Polonievo

Buranos

Municipio de Sante Tomás

Municipio de Polonievo

Buranos

Municipio de Sante Tomás

Municipio de Sante Tomás

Municipio de Polonievo

Al Pisicopio de Canada a la canada a servicio de Canada a la can

Figura 3.2.4-44 Subcuenca Arroyo NN3

Fuente: SGS Colombia, 2021

3.2.4.3.32 Subcuenca Arroyo Orijata (AO)

La subcuenca Arroyo Orijata tiene un área total de 2.623,95 Ha, corresponde al 3,73% del área de influencia con un área dentro de esta de 2.525,36 Ha. En la **Figura 3.2.4-45** se muestra la subcuenca respecto al área de influencia.

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

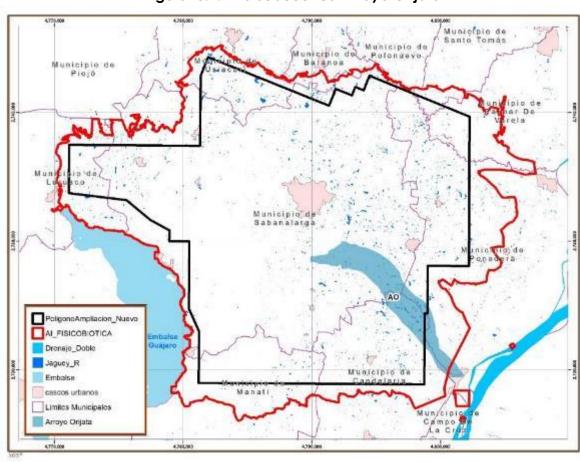


Figura 3.2.4-45 Subcuenca Arroyo Orijata

Fuente: SGS Colombia, 2021

3.2.4.3.33 Subcuenca Directos al Río Magdalena (DRM)

La subcuenca Directos al Río Magdalena tiene un área total de 16.220,23 Ha, corresponde al 1,86% del área de influencia con un área dentro de esta de 1.262,89 Ha. En la **Figura 3.2.4-46** se muestra la subcuenca respecto al área de influencia.

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

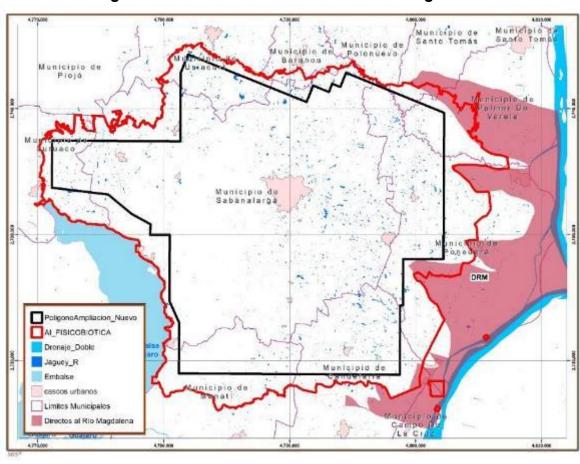


Figura 3.2.4-46 Subcuenca Directos al Río Magdalena

Fuente: SGS Colombia, 2021

3.2.4.4 Patrones y redes de drenaje

Los patrones de drenaje son el resultado conjunto de aspectos climáticos, geológicos, morfológicos, litológicos y del tipo de cobertura vegetal entre otros, que definen la forma, configuración y arreglo de los drenajes en una cuenca, dando paso a configuraciones más ramificadas que otras e incluso unas más desagregadas unas que otras, en donde fenómenos erosivos y socavación han tenido lugar a lo largo del tiempo, creando una dinámica fluvial característica.

A nivel regional se presentan patrones de drenaje de tipo trenzado o anastomosado en corrientes individuales como el río Magdalena, en donde los permanentes procesos erosivos y de depositación del cauce forman una serie de canales interconectados separados por islas, formando una especie de trenzamiento. De otro lado, el patrón de drenaje dendrítico es quizás el arreglo con

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

mayor presencia y recurrencia en el contexto regional. Este tipo de configuración se asocia a procesos erosivos en los cuales surge una ramificación en la que varios drenajes se unen a la corriente principal mediante ángulos agudos, como es el caso de aquellas subcuencas que entregan sus aguas al Río Magdalena. Este modelo de drenaje se desarrolla en suelos homogéneos, moderadamente permeables, con pendientes suaves, baja cobertura vegetal y sin ningún tipo de control, de allí que es más frecuente en las zonas próximas a la confluencia con el Embalse el Guájaro.

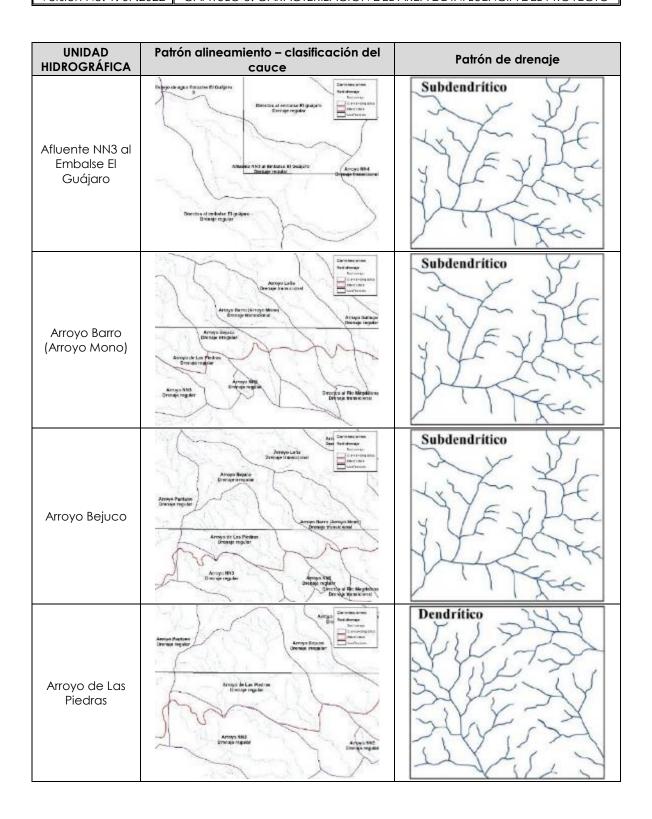
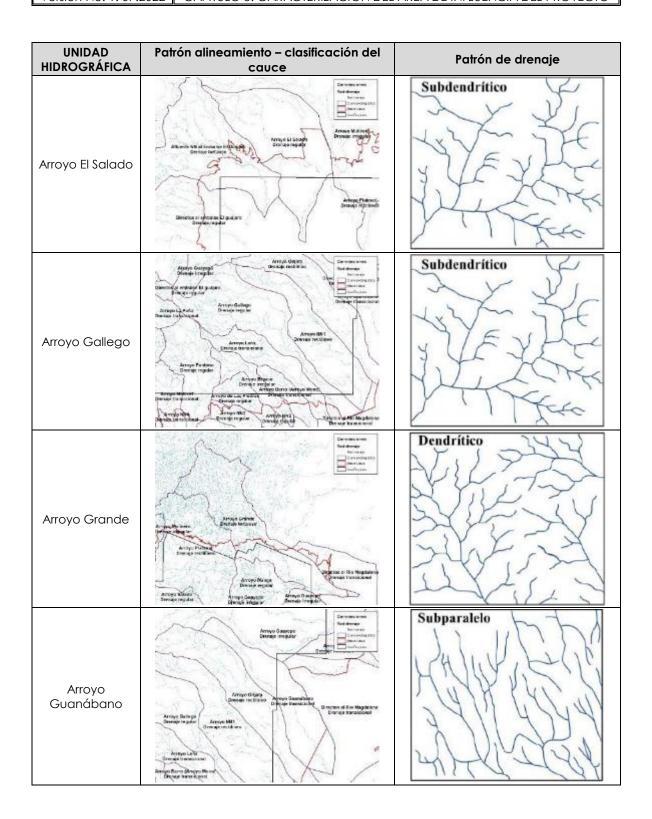
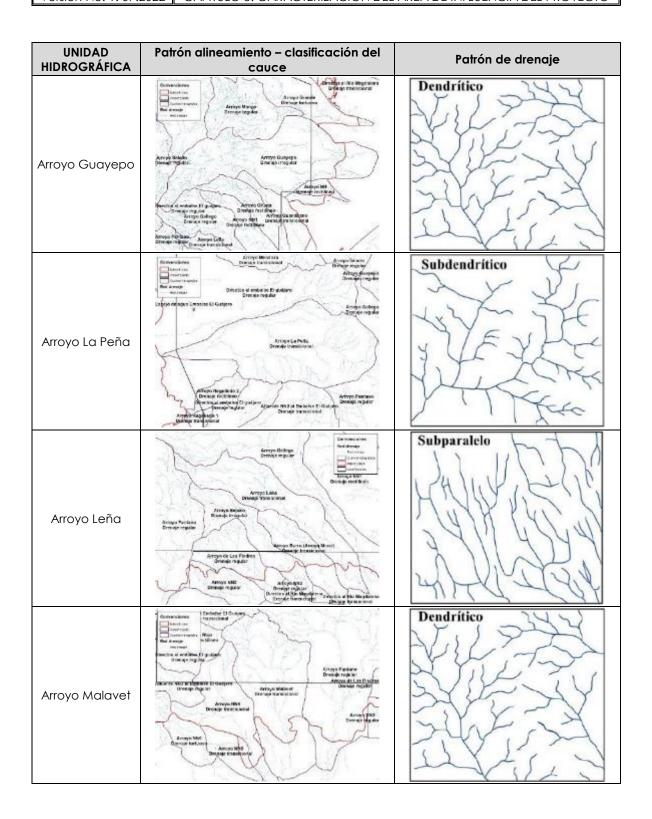
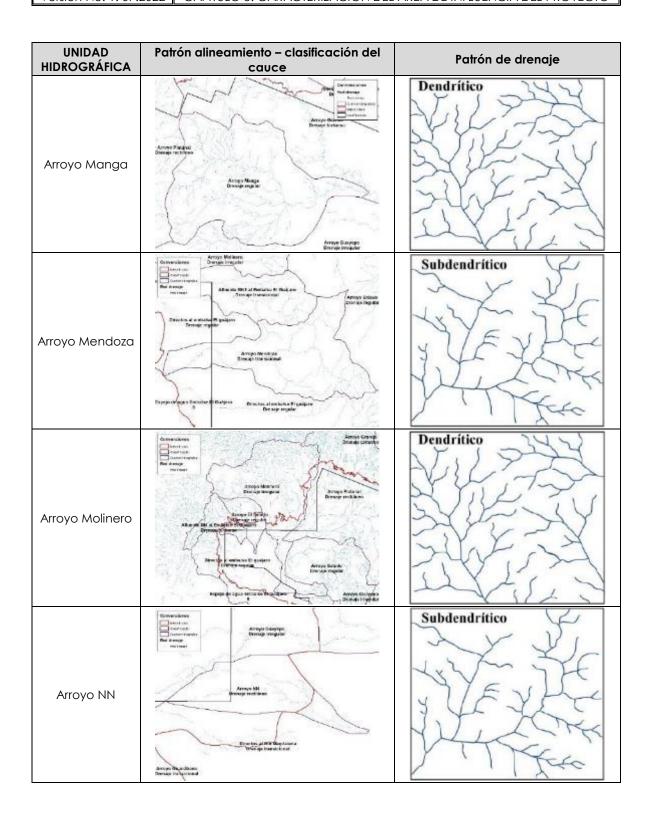
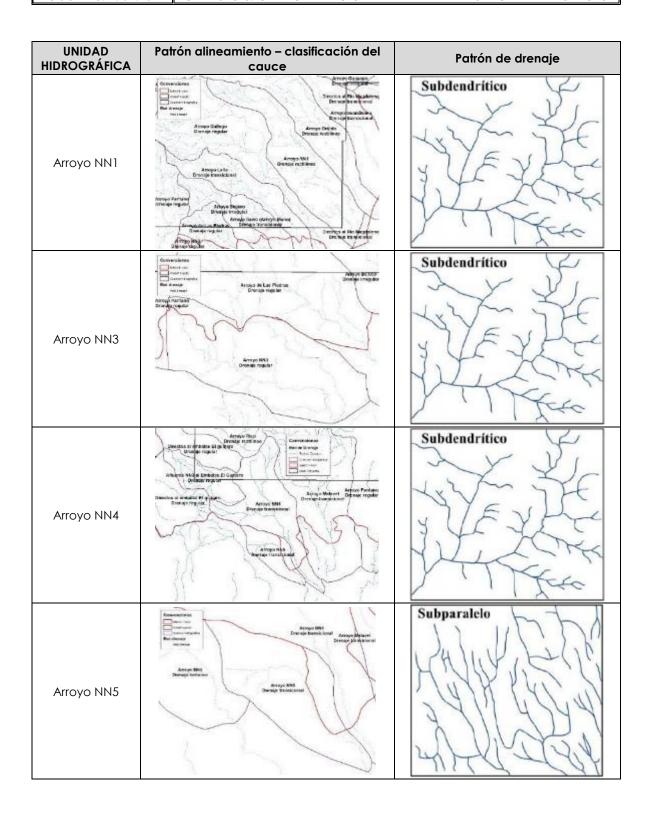

Tabla 3.2.4-4 Clasificación del tipo de drenaje

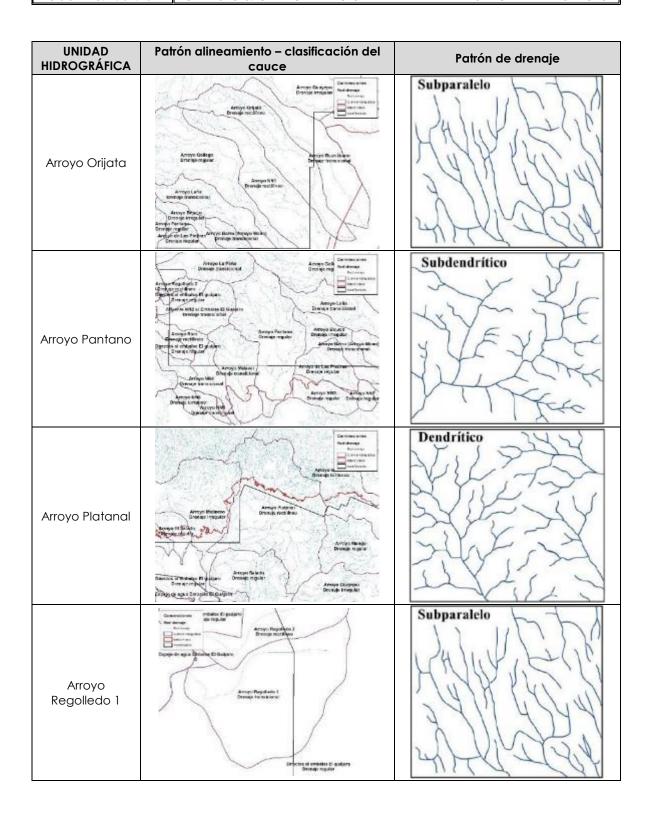
Tabla 3.2.4-4 Clasificación del tipo de drenaje.							
UNIDAD HIDROGRÁFICA	Patrón alineamiento — clasificación del cauce	Patrón de drenaje					
Afluente NN al Embalse El Guájaro	Octoversiones Construction Cons	Subdendrítico					
Afluente NN1 al Embalse El Guájaro	Arrays Salade Description Description Arrays Salade Description Description Arrays Salade Description Description Arrays Salade Description Description Description Arrays Salade Description Description Description Description Arrays Salade Description Des	Subdendrítico					
Afluente NN2 al Embalse El Guájaro	Conversions pulse	Subdendritico					

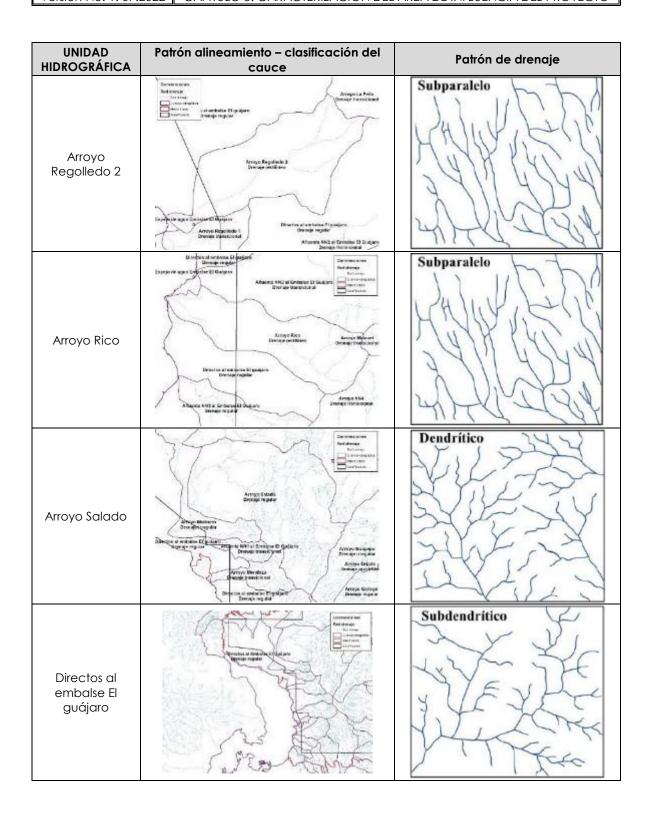

Versión No. 1. 07.2022


Versión No. 1. 07.2022


Versión No. 1. 07.2022


Versión No. 1. 07.2022


Versión No. 1. 07.2022


Versión No. 1. 07.2022

Versión No. 1. 07.2022

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

Fuente: SGS Colombia, 2021

3.2.4.5 Delimitación de las zonas de recarga en las cuencas hidrográficas

La zona de recarga (o área de recarga) es la parte de la cuenca hidrográfica en la cual, por las condiciones climatológicas, geológicas y topográficas, una gran parte de las precipitaciones se infiltran en el suelo, llegando a recargar los acuíferos en las partes más bajas de la cuenca. En la **Tabla 3.2.4-5** se presenta las zonas de recarga representadas en las subcuencas hidrográficas objeto de estudio en el área de influencia. Para mayor información remitirse al capítulo 3.2.7 Hidrogeología en el numeral 3.2.7.7 Zonas de recarga y descarga de los acuíferos.

Tabla 3.2.4-5 Zonas de recarga en las cuencas hidrográficas

,	ÁREA (ha)				
UNIDAD HIDROGRÁFICA	ZONA DE ESCORRENTÍA (NO RECARGA)	ZONA DE RECARGA DIRECTA	PARTICIPACIÓN TOTAL AI		
Afluente NN al Embalse El Guájaro	163,52	276,05	439,56		
Afluente NN1 al Embalse El Guájaro		392,67	392,67		
Afluente NN2 al Embalse El Guájaro		780,08	780,08		

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

	ÁREA (ha)						
UNIDAD HIDROGRÁFICA	ZONA DE ESCORRENTÍA (NO RECARGA)	ZONA DE RECARGA DIRECTA	PARTICIPACIÓN TOTAL AI				
Afluente NN3 al Embalse El Guájaro	,	224,36	224,36				
Arroyo Barro (Arroyo Mono)		476,87	476,87				
Arroyo Bejuco		728,60	728,60				
Arroyo de Las Piedras		654,71	654,71				
Arroyo El Salado	238,41	413,01	651,42				
Arroyo Gallego		3678,35	3678,35				
Arroyo Grande	95,83	4764,99	4860,81				
Arroyo Guanábano	197,47	1726,83	1924,30				
Arroyo Guayepo	1009,56	8950,49	9960,05				
Arroyo La Peña		865,86	865,86				
Arroyo Leña		1457,92	1457,92				
Arroyo Malavet		979,33	979,33				
Arroyo Manga	1426,83	3133,39	4560,22				
Arroyo Mendoza		667,10	667,10				
Arroyo Molinero	286,00	1872,18	2158,17				
Arroyo NN		562,48	562,48				
Arroyo NN1	133,06	2680,32	2813,38				
Arroyo NN3		116,14	116,14				
Arroyo NN4		507,45	507,45				
Arroyo NN5		27,41	27,41				
Arroyo Orijata	313,79	2213,00	2526,79				
Arroyo Pantano		2045,42	2045,42				
Arroyo Platanal	653,81	9358,12	10011,93				
Arroyo Regolledo 1		32,33	32,33				
Arroyo Regolledo 2		97,94	97,94				
Arroyo Rico		293,14	293,14				
Arroyo Salado	121,35	5556,27	5677,62				
Directos al embalse El guájaro	344,10	6022,15	6366,24				
Directos al Río Magdalena		1112,95	1112,95				
Espejo de agua Embalse El Guájaro		27,75	27,75				
TOTAL GENERAL	4983,72	62695,64	67679,36				

Fuente: SGS Colombia, 2021

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

3.2.4.6 Características morfométricas de las cuencas en el área de influencia fisicobiótica

La morfometría de una cuenca hidrográfica corresponde al estudio cuantitativo de las características físicas de la misma, dichas características corresponden a:

- Área (km²): Es uno de los parámetros más importantes en la caracterización de cuencas, influyendo en el potencial de producción de agua y en consecuencia en la magnitud de los caudales, corresponde a la superficie de drenaje hasta el punto de cierre determinado. Es el área o proyección horizontal incluida entre la divisoria topográfica de la cuenca. Su medición se realiza a partir de digitalización de la divisoria de aguas.
- Perímetro de la cuenca (km): Se determina midiendo la longitud de la línea divisoria de aguas de la cuenca.
- Longitud axial de la cuenca (km): La longitud axial se mide cuando se sigue el curso de agua más largo (corriente principal) desde la desembocadura hasta su nacimiento.
- Longitud máxima de la cuenca (km): es la longitud medida entre los puntos extremos de la cuenca.
- Longitud de Corrientes (km): Corresponde a la longitud de todas las corrientes de la cuenca.
- Número de Corrientes: Corresponde a la cantidad de corrientes presentes en la cuenca, se tienen en cuenta tanto intermitente como permanente, expresado en Km.
- Ancho máximo de la cuenca (km): es el dato que se obtiene al medir el diámetro en el área donde se encuentra el ancho máximo de la unidad hidrológica.
- Tiempo de concentración (tc horas): es el tiempo mínimo para que cualquier lugar de la cuenca aporte a la escorrentía de forma simultánea. Es decir, en el momento de presentarse una lluvia uniforme en una cuenca, las zonas más cercanas a la salida contribuyen a la escorrentía casi de inmediato. Mientras la lluvia continúa, los aportes de las zonas de aguas arriba llegan posteriormente, hasta que el flujo de todos los puntos de la cuenca se concentra en la zona baja. La metodología utilizada es Kirpich (1940).

$$t_c = 0.06628 \left(\frac{L}{\sqrt{So}}\right)^{0.77}$$

L: longitud del cauce principal en metros

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

S: diferencia entre las dos elevaciones extremas (metros) dividida por L (m) resultando m/m

También encontramos las pendientes y la forma de la cuenca a partir del cálculo de valores numéricos, entre otros, cómo se muestra en **Tabla 3.2.4-6**.

Tabla 3.2.4-6 Parámetros generales de las unidades hidrográficas

SUBCUENCA	ÁREA Km²	PERÍMETRO Km	LONGITUD CAUCE PRINCIPAL Km	LONGITUD AXIAL Km	ANCHO PROMEDIO DE LA CUENCA Km	TIEMPO DE CONCENTRACIÓN
Afluente NN Embalse el Guájaro	17,09	25,12	8,81	3,78	4,52	1,21
Afluente NN1 Embalse el Guájaro	3,93	11,21	6,08	4,10	0,96	1,11
Afluente NN2 Embalse el Guájaro	7,80	12,75	5,62	3,95	1,97	1,14
Afluente NN3 Embalse el Guájaro	2,24	7,74	4,83	2,98	0,75	0,88
Arroyo Barro	7,11	14,75	7,99	6,39	1,11	2,12
Arroyo Bejuco	8,64	20,98	11,10	6,18	1,40	2,42
Arroyo las Piedras	8,32	14,77	7,15	4,77	1,74	1,62
Arroyo el Salado	14,12	19,25	3,48	2,18	6,48	0,73
Arroyo Gallego	36,76	42,57	21,08	13,37	2,75	4,36
Arroyo Grande	139,60	87,97	58,75	25,89	5,39	12,09
Arroyo Guanabano	22,32	28,90	15,33	12,36	1,81	4,74
Arroyo Guayepo	112,72	63,23	26,67	12,96	8,70	5,67
Arroyo la Peña	8,65	14,74	5,84	4,40	1,97	1,03
Arroyo Leña	16,00	29,22	16,50	11,79	1,36	3,63
Arroyo Malavet	10,65	15,73	6,71	5,40	1,97	1,26
Arroyo Manga	45,58	34,12	16,50	10,24	4,45	4,58
Arroyo Mendoza	6,67	16,32	7,40	5,18	1,29	1,48
Arroyo Molinero	89,76	67,00	23,09	12,37	7,26	3,88
Arroyo NN	6,57	14,06	5,56	4,76	1,38	1,96
Arroyo NN1	28,12	32,15	9,32	8,27	3,40	2,09
Arroyo NN3	5,22	10,35	5,75	3,83	1,36	1,45
Arroyo NN4	5.48	15.11	6.37	5.20	1.05	1.21
Arroyo NN5	1,75	6,33	2,59	2,03	0,86	0,72
Arroyo Orijata	26,22	35,02	10,23	9,77	2,68	2,21

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

SUBCUENCA	ÁREA Km²	PERÍMETRO Km	LONGITUD CAUCE PRINCIPAL Km	LONGITUD AXIAL Km	ANCHO PROMEDIO DE LA CUENCA Km	TIEMPO DE CONCENTRACIÓN
Arroyo Pantano	21,14	24,32	16,91	11,21	1,89	3,94
Arroyo Platanal	144,66	66,58	18,84	16,71	8,66	3,69
Arroyo Regolledo 1	0,32	2,44	0,88	0,67	0,48	0,27
Arroyo Regolledo 2	0,98	5,34	0,94	0,85	1,15	0,16
Arroyo Rico	2,93	9,19	4,19	3,61	0,81	0,81
Arroyo Salado	56,75	36,99	24,16	15,28	3,71	5,18
Directos al Embalse el Guájaro	75,88	107,57	6,78	4,48	16,94	0,93
Directos al Río Magdalena	162,09	121,36	5,26	4,17	38,87	1,03
Espejo de agua Embalse El Guájaro	No Aplica					

Fuente: SGS Colombia, 2021

3.2.4.6.1 Índices morfométricos

A continuación, se describen los índices morfométricos que representan las subcuencas en contacto con el Al fisicobiótica. Además de presentarlos por partes en este apartado, en el AnexoF_carteras de campo – Morfometría de Cuencas se adjunta la hoja de cálculo para todos los parámetros morfométricas estimados y en él se puede confirmar cada una de las estimaciones.

a. Forma de la Hoya – Análisis Área – Longitud

Este parámetro define las características de forma de la cuenca, a partir de las relaciones geológicas que la moldean, para explicar cualitativamente la forma de la cuenca, es comparada por figuras geométricas como círculos, rectángulos y cuadrados principalmente.

b. Factor de forma (Horton):

Este factor es uno de los más utilizados para medir la forma de la cuenca, desarrollado por Horton, ver tabla de clasificación **Tabla 3.2.4-7**, relaciona el área de la cuenca con el cuadrado de la longitud axial expresado de la siguiente manera:

$$K_f = \frac{A}{L^2}$$

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

Ecuación 3.2.4- 1 Factor de forma

Donde:

A =Área de la cuenca (Km²)

L = Longitud axial de la corriente (Km)

Tabla 3.2.4-7 Tabla clasificaciones factor de forma

K _f	Clasificación
< 0.22	Muy alargada
0.22 – 0.30	Alargada
0.30 – 0.37	Ligeramente alargada
0.37 – 0.45	Ni alargada ni ensanchada
0.45 – 0.60	Ligeramente ensanchada
0.60 – 0.80	Ensanchada
0.80 – 1.20	Muy ensanchada
> 1.20	Rodeando el desagüe

Fuente Horton, 1945.

En la **Tabla 3.2.4-8** se presentan los resultados para cada una de las unidades hidrológicas analizadas.

Tabla 3.2.4-8 Factor de Forma

SUBCUENCA	Área km²	L long axial	L ²	FACTOR DE FORMA	FORMA DE LA CUENCA
Afluente NN Embalse el Guájaro	17,09	3.78	14.29	1,20	Muy Alargada
Afluente NN1 Embalse el Guájaro	3,93	4.10	16.81	0,23	Muy Alargada
Afluente NN2 Embalse el Guájaro	7,80	3.95	15.60	0,50	Alargada
Afluente NN3 Embalse el Guájaro	2,24	2.98	8.88	0,25	Muy Alargada
Arroyo Barro	7,12	6.39	40.83	0,17	Muy Alargada
Arroyo Bejuco	8,64	6.18	38.19	0,23	Muy Alargada
Arroyo las Piedras	8,32	4.77	22.75	0,37	Muy Alargada
Arroyo el Salado	14,12	2.18	4.75	2,97	Muy Redonda
Arroyo Gallego	36,76	13.37	178.76	0,21	Muy Alargada
Arroyo Grande	139,60	25.89	670.29	0,21	Muy Alargada
Arroyo Guanábano	22,32	12.36	152.77	0,15	Muy Alargada
Arroyo Guayepo	112,72	12.96	167.96	0,67	Alargada
Arroyo la Peña	8,65	4.40	19.36	0,45	Alargada

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

SUBCUENCA	Área km²	L long axial	L ²	FACTOR DE FORMA	FORMA DE LA CUENCA	
Arroyo Leña	16,00	11.79	139.00	0,12	Muy Alargada	
Arroyo Malavet	10,65	5.40	29.16	0,37	Muy Alargada	
Arroyo Manga	45,58	10.24	104.86	0,43	Alargada	
Arroyo Mendoza	6,67	5.18	26.83	0,25	Muy Alargada	
Arroyo Molinero	89,76	12.37	153.02	0,59	Alargada	
Arroyo NN	6,57	4.76	22.66	0,29	Muy Alargada	
Arroyo NN1	28,12	8.27	68.39	0,41	Alargada	
Arroyo NN3	5,22	3.83	14.67	0,36	Muy Alargada	
Arroyo NN4	5.48	5.20	27	0.20		
Arroyo NN5	1,75	2.03	4.12	0,42	Alargada	
Arroyo Orijata	26,22	9.77	95.45	0,27	Muy Alargada	
Arroyo Pantano	21,14	11.21	125.66	0,17	Muy Alargada	
Arroyo Platanal	144,66	16.71	279.22	0,52	Alargada	
Arroyo Regolledo 1	0,32	0.85	0.72	0,71	Muy Alargada	
Arroyo Regolledo 2	0,98	3.61	13.03	1,36	Redonda	
Arroyo Rico	2,93	15.28	233.48	0,22	Muy Alargada	
Arroyo Salado	56,75	4.48	20.07	0,24	Muy Alargada	
Directos al Embalse el Guájaro	75,88	4.17	17.39	3,78	Redonda	
Directos al Río Magdalena	162,09	3.78	670.29	9,32	Redonda	
Espejo de agua Embalse El Guájaro		No Aplica				

Fuente: SGS Colombia, 2021

Las cuencas que tienen un factor de forma menor a 1 son alargadas y en la medida en que se acercan a 1 se tornan más redondas; las cuencas alargadas tienen un mayor tiempo de retención o concentración y por consiguiente una mejor respuesta ante avenidas torrenciales.

En general las cuencas localizadas en el área de estudio tienen una Alargada y Muy alargada, sin embargo, también se encontraron cuencas Redondas y Muy Redondas como la de Arroyo las Piedras.

c. Coeficiente de compacidad o índice de Gravelius

Es la relación entre el perímetro de la cuenca y la longitud de la circunferencia de un círculo de área igual a la de la cuenca, se expresa de la siguiente manera:

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

$$K_c = 0.28 * \frac{P}{\sqrt{A}}$$

Ecuación 3.2.4- 2 Coeficiente de compacidad

Donde:

P = Perímetro de la cuenca (Km)

A = Área de la cuenca (Km)

En la **Tabla 3.2.4-10** se presentan los resultados del coeficiente de compacidad para cada una de las unidades hidrográficas analizadas.

Tabla 3.2.4-9 Tabla clasificaciones Coeficiente de Compacidad

Кс	Clasificación
1 - 1.25	Casi redonda a oval - redonda
1.25 – 1.5	Circular - Redonda
1.5 – 1.75	Oval Redonda u Oval Oblonga
1.75 – 1.95	Rectangular
> 1.95	Rectangular - Lobulada

Tabla 3.2.4-10 Coeficiente de compacidad

SUBCUENCA	Área km²	Perímetro km	COEFICIENTE COMPACIDAD	CLASIFICACIÓN
Afluente NN Embalse el Guájaro	17.09	25.12	1,70	Oval Redonda u Oval
				Oblonga
				Oval Redonda
Afluente NN1 Embalse el Guájaro	3.93	11.21	1,58	u Oval
				Oblonga
Afluente NN2 Embalse el Guájaro	7.80	12.75	1,28	Circular -
7 2 2 2 2 2 2 2 2 2 2 2 2 2	, , , ,		.,20	Redonda
Afluente NN3 Embalse el Guájaro	2.24	7.74	1,45	Circular -
7 moonio i moonio di coajaro	2.2 '	7 . 7 .	1,10	Redonda
				Oval Redonda
Arroyo Barro	7.12	14.75	1,55	u Oval
				Oblonga
Arroyo Bejuco	8.64	20.98	2,00	Rectangular -
Alloyo bejoco	0.04	20.70	2,00	Lobulada

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

SUBCUENCA	Área km²	Perímetro km	COEFICIENTE COMPACIDAD	CLASIFICACIÓN	
Arroyo las Piedras	8.32	14.77	1,43	Circular -	
,			·	Redonda	
Arroyo el Salado	14.12	19.25	1,43	Circular -	
Arroyo Gallego	36.76	42.57	1,97	Redonda Rectangular	
				Rectangular -	
Arroyo Grande	139.60	87.97	2,08	Lobulada	
				Oval Redonda	
Arroyo Guanábano	22.32	28.90	1,71	u Oval	
,			·	Oblonga	
				Oval Redonda	
Arroyo Guayepo	112.72	63.23	1,67	u Oval	
				Oblonga	
Arroyo la Peña	8.65	14.74	1,40	Circular -	
7 110 7 0 1 0 1 0 1 0		,, .	.,	Redonda	
Arroyo Leña	16.00	29.22	2,05	Rectangular -	
,			·	Lobulada Circular -	
Arroyo Malavet	10.65	15.73	1,35	Redonda	
				Circular -	
Arroyo Manga	45.58	34.12	1,42	Redonda	
Arroyo Mendoza	6.67	16.32	1,77	Rectangular	
Arroyo Molinero	89.76	67.00	1,98	Rectangular	
,			·	Oval Redonda	
Arroyo NN	6.57	14.06	1,54	u Oval	
·				Oblonga	
				Oval Redonda	
Arroyo NN1	28.12	32.15	1,70	u Oval	
				Oblonga	
Arroyo NN3	5.22	10.35	1,27	Circular -	
,				Redonda	
Arroyo NN4	5.48	15.11	1.81	Rectangular	
Arroyo NN5	1.75	6.33	1,34	Circular - Redonda	
Arroyo Orijata	26.22	35.02	1,91	Rectangular	
	20.22		1,71	Circular -	
Arroyo Pantano	21.14	24.32	1,48	Redonda	
				Oval Redonda	
Arroyo Platanal	144,66	66,58	1,55	u Oval	
, , , , , , , , , , , , , , , , , , , ,	,00	, 50	/	, , , ,	Oblonga
Arroya Pagallada 1	0.30	2.44	1.01	Circular -	
Arroyo Regolledo 1	0.32	2.44	1,21	Redonda	

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

SUBCUENCA	Área km²	Perímetro km	COEFICIENTE COMPACIDAD	CLASIFICACIÓN
Arroyo Regolledo 2	0.98	5.34	1,51	Oval Redonda u Oval Oblonga
Arroyo Rico	2.93	9.19	1,50	Oval Redonda u Oval Oblonga
Arroyo Salado	56.75	36.99	1,37	Circular - Redonda
Directos al Embalse el Guájaro	75.88	107.57	3,46	Rectangular - Lobulada
Directos al Río Magdalena	162.09	121.36	2,67	Rectangular - Lobulada
Espejo de agua Embalse El Guájaro	No Aplica			

Fuente: SGS Colombia, 2021.

Una cuenca con un índice de compacidad entre 1.5 y 1.75 se cataloga como una cuenca oval-oblonga, indicando que es una cuenca irregular, con menores posibilidades de torrencialidad, en cuanto más se acerca este valor a 1, la cuenca tiene una forma más circular, con posibilidades de inundaciones y grandes crecidas.

d. Índice de Alargamiento

Es un indicador de la forma de la cuenca, teniendo en cuenta su tendencia a ser de forma alargada, Es la relación entre la longitud máxima de la cuenca y el ancho máximo de la misma, expresado por la siguiente ecuación:

$$Ia = \frac{L_{max}}{a_{max}}$$

Ecuación 3.2.4-3 Índice de Alargamiento

Donde:

Lmax = Longitud máxima de la cuenca (Km)

Amax = Ancho máximo de la cuenca (Km)

Empleando la **Ecuación 3.2.4-** 3 se obtienen los resultados que se presentan en la Tabla 3.2.4-12, es una forma de confirmar la clasificación del factor de forma, y como puede observarse, coinciden los cálculos de ambos índices.

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

Tabla 3.2.4-11 Tabla clasificaciones Indice de Alargamiento

Kc	Clasificación
0 – 0.95	Muy Redonda
0.95 - 1	Redondeada
1 – 3	Alargada
> 3	Muy Alargada

Tabla 3.2.4-12 Índice de Alargamiento

SUBCUENCA	ÍNDICE DE ALARGAMIENTO	CLASIFICACIÓN
Afluente NN Embalse el Guájaro	0,84	Muy Redonda
Afluente NN1 Embalse el Guájaro	4,28	Muy Alargada
Afluente NN2 Embalse el Guájaro	2,00	Alargada
Afluente NN3 Embalse el Guájaro	3,96	Muy Alargada
Arroyo Barro	5,73	Muy Alargada
Arroyo Bejuco	4,42	Muy Alargada
Arroyo las Piedras	2,73	Muy Alargada
Arroyo el Salado	0,34	Muy Redonda
Arroyo Gallego	4,86	Muy Alargada
Arroyo Grande	4,80	Muy Alargada
Arroyo Guanabano	6,84	Muy Alargada
Arroyo Guayepo	1,49	Alargada
Arroyo la Peña	2,24	Alargada
Arroyo Leña	8,69	Muy Alargada
Arroyo Malavet	2,74	Muy Alargada
Arroyo Manga	2,30	Alargada
Arroyo Mendoza	4,02	Muy Alargada
Arroyo Molinero	1,70	Alargada
Arroyo NN	3,45	Muy Alargada
Arroyo NN1	2,43	Alargada
Arroyo NN3	2,81	Muy Alargada
Arroyo NN4	4.93	Muy Alargada
Arroyo NN5	2,35	Alargada
Arroyo Orijata	3,64	Muy Alargada
Arroyo Pantano	5,94	Muy Alargada
Arroyo Platanal	1,93	Alargada
Arroyo Regolledo 1	1,40	Muy Alargada

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

SUBCUENCA	ÍNDICE DE ALARGAMIENTO	CLASIFICACIÓN	
Arroyo Regolledo 2	0,74	Redondeada	
Arroyo Rico	4,45	Muy Alargada	
Arroyo Salado	4,11	Muy Alargada	
Directos al Embalse el Guájaro	0,26	Redondeada	
Directos al Río Magdalena	0,11	Redondeada	
Espejo de agua Embalse El Guájaro	No Aplica		

Fuente: SGS Colombia, 2021

Una de las particularidades fisiográficas más importantes es la relacionada con la red de drenaje y tipo o patrón que forma, el cual está integralmente relacionado con los suelos, la cobertura vegetal y la pendiente, a continuación, se analizan.

e. Densidad de Drenaje:

Es la relación entre la longitud total de los cursos de agua de la cuenca y su área total. Anexo F_carteras de campo_hidrologia – Morfometría de Cuencas.

$$D_d = \frac{L}{A} \ en \left(\frac{km}{Km^2}\right)$$

Ecuación 3.2.4- 4 Densidad de drenaje

Donde:

L = Longitud total de las corrientes de agua de la cuenca (Km)

 $A = \text{Área total de la cuenca (Km}^2)$

Tabla 3.2.4-13 Densidad de drenaje

SUBCUENCA	DENSIDAD DRENAJE Km	CLASIFICACIÓN
Afluente NN Embalse el Guájaro	3.71	Moderada
Afluente NN1 Embalse el Guájaro	3.32	Moderada
Afluente NN2 Embalse el Guájaro	3.17	Moderada
Afluente NN3 Embalse el Guájaro	3.80	Moderada
Arroyo Barro	2.27	Moderada
Arroyo Bejuco	2.79	Moderada
Arroyo las Piedras	2.84	Moderada
Arroyo el Salado	1.74	Moderada
Arroyo Gallego	6.29	Alta
Arroyo Grande	3.51	Moderada

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

SUBCUENCA	DENSIDAD DRENAJE Km	CLASIFICACIÓN
Arroyo Guanábano	0.72	Baja
Arroyo Guayepo	1.73	Moderada
Arroyo la Peña	3.84	Moderada
Arroyo Leña	2.27	Moderada
Arroyo Malavet	3.02	Moderada
Arroyo Manga	2.72	Moderada
Arroyo Mendoza	3.28	Moderada
Arroyo Molinero	2.80	Moderada
Arroyo NN	1.71	Moderada
Arroyo NN1	1.84	Moderada
Arroyo NN3	2.73	Moderada
Arroyo NN4	2.47	Moderado
Arroyo NN5	3.53	Moderada
Arroyo Orijata	1.95	Moderada
Arroyo Pantano	4.17	Moderada
Arroyo Platanal	3.02	Moderada
Arroyo Regolledo 1	2.78	Moderada
Arroyo Regolledo 2	3.12	Moderada
Arroyo Rico	1.47	Moderada
Arroyo Salado	2.75	Moderada
Directos al Embalse el Guájaro	0.97	Baja
Directos al Río Magdalena	0.59	Baja
Espejo de agua Embalse El Guájaro	N	o Aplica

Fuente: SGS Colombia, 2021

La densidad de drenaje está asociada con la transmisividad del suelo, el caudal o flujo base, el caudal medio anual por unidad de área y la recarga. (Carlson, 1963¹²). Las subcuencas en general se catalogan entre Baja y moderadamente drenadas como a diferencia de la subcuenca Arroyo Gallego, que se clasifica como altamente drenadas.

_

¹² CARLSON, C.W. Drainage density and streamflow. U.S. Geol. Survey. Prof. paper. 1963, 422 C.

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

f. Pendiente media:


Este parámetro es de gran importancia para el análisis morfométrico de una cuenca, debido a que está directamente relacionada con la velocidad con la que se dará la escorrentía superficial en la cuenca de estudio. En la **Figura 3.2.4-47** se presentan las pendientes para cada una de las unidades hidrográficas.

Tabla 3.2.4-14 Pendientes en el área de estudio

PENDIENTE (%)	PENDIENTE (Grados)	RELIEVE	Área (ha)	Área (%)
0 – 1	0 – 1	A nivel	1248,913179	1,86%
1 – 3	1 – 2	Ligeramente plana	29,114829	0,04%
3 – 7	2 – 4	Ligeramente inclinada	44450,97832	66,19%
7 – 12	4 – 7	Moderadamente inclinada	14099,56317	21,00%
12 – 25	7 – 14	Fuertemente inclinada	6925,801081	10,31%
25 – 50	14 – 27	Ligeramente escarpada o empinada	397,61182	0,59%
		67151,9824	100	

Fuente: SGS Colombia, 2021

Figura 3.2.4-47 Pendientes en el área de estudio

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

3.2.4.7 Clasificación hidrológica de las corrientes según su temporalidad

Una clasificación que se puede dar en los sistemas lóticos corresponde al tiempo que permanece el agua sobre el cauce. Para ellos se distinguen corrientes permanentes, intermitentes y efímeras. El flujo y temporalidad se da por los eventos de precipitación, la posibilidad de recarga de la cuenca en las partes altas y aportantes, por la vegetación junto al cauce, el tipo de material del cauce, entre otras.

Según el trabajo de campo, la mayoría de los drenajes en el área de influencia permanecen secos y solo ante eventos de lluvia puede observarse flujo en el cauce. Por lo tanto, se reconoce una red de drenaje intermitente que no sostiene el recurso hídrico en el tiempo, algunos ejemplos se observan en la **Fotografía 3.2.4-24**, **Fotografía 3.2.4-25**, **Fotografía 3.2.4-26** y **Fotografía 3.2.4-27**. Esto es una muestra de la muy baja retención y regulación hídrica de las cuencas presentes en el Al fisicobiótica.

Fotografía 3.2.4-24 Arroyo La Yoya

*Coordenadas de toma: 4783373E, 2725947N Fuente: SGS Colombia, 2021

Fotografía 3.2.4-25 Arroyo Bran

*Coordenadas de toma: 4780502E, 2733965N Fuente: SGS Colombia, 2021

Fotografía 3.2.4-26 Arroyo Manga

*Coordenadas de toma: 4797247E, 2735860N Fuente: SGS Colombia, 2021

Fotografía 3.2.4-27 Arroyo Gallego

*Coordenadas de toma: 4780502E, 2733965N Fuente: SGS Colombia, 2021

Lewis Energy Colombia, Inc.

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

Tan sólo se encontraron tres arroyos permanentes en el área de influencia: arroyo Regolledo 1 (ver **Fotografía 3.2.4-28**), arroyo Regolledo 2 (ver **Fotografía 3.2.4-29**) y arroyo Obispo (ver **Fotografía 3.2.4-30**).

Fotografía 3.2.4-28 Arroyo Regolledo 1

*Coordenadas de toma: 4780875 E, 2722785 N Fuente: SGS Colombia, 2021

Fotografía 3.2.4-29 Arroyo Regolledo 2

*Coordenadas de toma: 4780940 E, 2722964 N Fuente: SGS Colombia, 2021

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

*Coordenadas de toma: 4780137 E, 2726126 N Fuente: SGS Colombia, 2021

3.2.4.8 Análisis estadístico de información hidroclimatológica

Este análisis fue desarrollado a la información recuperada del IDEAM a través de las consultas realizadas de las variables precipitación y caudal en el portal DHIME¹³. Los análisis realizados fueron: extensión, actualidad y completitud de la serie de datos hidrológicos, análisis de consistencia, llenado de datos faltantes, representación de series en diagramas de cajas y bigotes, análisis pruebas de tendencia de Mann – Kendall, correlación con la ocurrencia de fenómenos macroclimáticos (ENOS) y cálculo de estadísticos básicos.

La información climática de la zona incluida las estaciones utilizadas para dicho análisis se encuentran en el Capítulo 3.2.9 Atmosfera en el numeral 3.2.9.1 Clima.

3.2.4.8.1 Análisis de extensión, actualidad y completitud de las series de datos hidroclimatológicos

La información obtenida del IDEAM fue tabulada y se tomaron las fechas de inicio y finalización de las series de tiempo, con el fin de verificar su extensión. En la **Tabla**

_

¹³ Aplicativo DHIME se encuentra en la dirección: http://dhime.ideam.gov.co/atencionciudadano/

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

3.2.4-15 y **Tabla 3.2.4-16**, se presentan los periodos de información que se encuentra disponible en cada una de las series de interés.

Tabla 3.2.4-15 Periodo de tiempo con información de las estaciones de precipitación diaria

ESTACIÓN	CÓDIGO ESTACIÓN	FECHA INICIAL	FECHA FINAL
USIACURÍ	29040240	01/01/1991	31/12/2020
SAN RAFAEL	29060540	01/01/1991	30/09/2020
SAN JOSÉ	29030140	01/01/1991	07/02/2020
SAN ESTANISLAO	29030050	01/01/1991	31/12/2020
SALAMINA	29050020	01/01/1991	31/12/2020
PUERTO GIRALDO	29040300	01/01/1991	31/12/2020
PORVENIR EL	14010090	01/01/1991	31/12/2020
PONEDERA	29040300	01/01/1991	30/09/2020
PIOJO	14010010	01/01/1991	31/12/2020
NORMAL MANATÍ - AUTOMÁTICA	2903508	01/01/1991	31/12/2020
MONTEBELLO	29040020	01/01/1991	31/12/2020
LOMAGRANDE	29030270	01/01/1991	31/01/2020
LEÑA	29040200	01/01/1991	31/12/2020
JUAN DE ACOSTA	2904511	01/01/1991	31/12/2020
HIBACHARO	14010020	01/01/1991	31/12/2020
GALERAZAMBA	1401501	01/01/1992	06/07/2014
CASA DE BOMBAS	29030410	01/01/1991	31/08/2020
CANDELARIA	29040260	01/01/1991	31/12/2020
CAMPANOS LOS	2904029	01/01/1991	31/12/2020

Fuente: SGS Colombia, 2021

Tabla 3.2.4-16 Periodo de tiempo con información de las estaciones de caudal y nivel mensual

ESTACIÓN	FECHA INICIAL	FECHA FINAL
Calamar (29037020)	01/01/1991	31/12/2020
Inkora K7 (29037360)	01/01/1991	30/04/2012

Fuente: SGS Colombia, 2021

Se encontró que las series son actuales, excepto la precipitación diaria en la estación Galerazamba, por lo que esta estación no será usada para el procesamiento posterior de la precipitación. Las demás estaciones cumplen con el criterio de actualidad.

Las series de tiempo tienen en su totalidad más de 10 años de información disponible, por lo que cumplen con el criterio de extensión requerido por los términos de referencia y metodología de elaboración de estudios ambientales.

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

Posteriormente, se calculó la cantidad de datos faltantes para cada serie, como un indicador de la completitud de las series.

Tabla 3.2.4-17 Proporción de datos faltantes de estaciones de precipitación

ESTACIÓN	DATOS DISPONIBLES	DATOS ESPERADOS	DATOS FALTANTES	DATOS FALTANTES [%]
CAMPANOS LOS	10679	10958	279	2,5
CANDELARIA	10692	10958	266	2,4
CASA DE BOMBAS	10462	10958	496	4,5
GALERAZAMBA	6058	10958	4900	44,7
HIBACHARO	10621	10958	337	3,1
JUAN DE ACOSTA	10003	10958	955	8,7
LEÑA	10838	10958	120	1,1
LOMAGRANDE	10280	10958	678	6,2
MONTEBELLO	10650	10958	308	2,8
NORMAL MANATÍ - AUTOMÁTICA	10739	10958	219	2,0
PINTADA LA	9547	10958	1411	12,9
PIOJO	10767	10958	191	1,7
POLONUEVO	9471	10958	1487	13,6
PONEDERA	9483	10958	1475	13,5
PORVENIR EL	10463	10958	495	4,5
PUERTO GIRALDO	10667	10958	291	2,7
rabón el hda	9389	10958	1569	14,3
SALAMINA	10927	10958	31	0,3
SAN ESTANISLAO	10559	10958	399	3,6
SAN JOSÉ	10065	10958	893	8,1
SAN RAFAEL	10865	10958	93	0,8
USIACURÍ	10652	10958	306	2,8

Fuente: SGS Colombia, 2021

Tabla 3.2.4-18 Proporción de datos faltantes de estaciones de caudal y nivel

ESTACIÓN	CORRIENTE	DATOS DISPONIBLES	DATOS ESPERADOS	DATOS FALTANTES	DATOS FALTANTES [%]
Calamar (29037020)	Río Magdalena	10880	10958	78	0,7
Inkora K7 (29037360)	Canal del Dique	6951	7791	840	10,8

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

Se definió que todas las series con un porcentaje de datos faltantes mayor que 10 serán excluidas del desarrollo de la caracterización hidrológica del proyecto. En este entendido, las estaciones de precipitación que no cumplen el criterio de completitud son: Galerazamba, Pintada La, Polonuevo, Ponedera y Rabón El Hda. En la serie de caudales, se tiene que la estación Inkora K-7 no cumple el criterio de completitud.

3.2.4.8.2 Análisis de consistencia

La consistencia de una serie de datos se refiere a la no existencia de saltos abruptos en la información, valores extremos que no concuerden con la realidad y tendencias relacionadas con errores sistemáticos de la toma de datos. Se usaron criterios gráficos para el chequeo de consistencia de las series temporales.

A modo de ejemplo, se presenta la gráfica de precipitación diaria en la estación Usiacurí en el periodo 1991-2020 (ver Figura 3.2.4-48). Las demás gráficas se presentan en el Anexo F_carteras de campo_ Hidrología. Precipitación Diaria.

USIACURÍ

140

y=6E-05x+0.6819

120

80

20

01-91 01-93 01-95 01-97 01-99 01-01 01-03 01-05 01-07 01-09 01-11 01-13 01-15 01-17 01-19

Figura 3.2.4-48 Precipitación diaria en la estación Usiacurí (1991 – 2020)

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

En la **Figura 3.2.4-49** se presenta la gráfica de caudales diarios del río Magdalena en la estación Calamar.

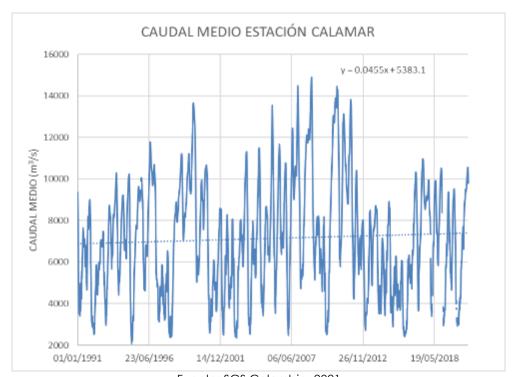


Figura 3.2.4-49 Caudal diario en la estación Calamar (1991 – 2020)

Fuente: SGS Colombia, 2021

En estas representaciones gráficas no se identifican valores atípicos extremos, así como no presenta una tendencia marcada que pueda indicar errores sistemáticos sostenidos en el tiempo. En el Anexo_F_carteras de campo_hidrologia Análisis Estadístico y Tratamiento de Datos se presentan los gráficos de análisis de consistencia de la precipitación y caudal, encontrando que todas las series analizadas son consistentes.

3.2.4.8.3 Análisis de homogeneidad (tendencia Mann-Kendall)

Se desarrollaron las pruebas de Mann-Kendall para reconocer la existencia de tendencia en las series de tiempo. En la **Tabla 3.2.4-19** se presenta el resumen de los resultados obtenidos. En el Anexo_F_carteras de campo_hidrologia Análisis Estadístico y Tratamiento se presentan los soportes de las pruebas Mann-Kendall. En general no se identifican tendencias estadísticamente significativas, excepto en las

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

estaciones de precipitación Candelaria, Casa de Bombas y San Estanislao; esto representa 3/16 (18,8 %) de la totalidad de estaciones de precipitación.

Tabla 3.2.4-19 Resultados pruebas Mann-Kendall para precipitación

ESTACIÓN	TENDENCIA - MANN KENDALL
Campanos Los	No tiene tendencia estadísticamente significativa
Candelaria	Tiene tendencia decreciente estadísticamente significativa
Casa de Bombas	Tiene tendencia creciente estadísticamente significativa
Hibacharo	No tiene tendencia estadísticamente significativa
Juan de Acosta	No tiene tendencia estadísticamente significativa
Leña	No tiene tendencia estadísticamente significativa
Lomagrande	No tiene tendencia estadísticamente significativa
Montebello	No tiene tendencia estadísticamente significativa
Normal Manatí - Automática	No tiene tendencia estadísticamente significativa
Piojo	No tiene tendencia estadísticamente significativa
Porvenir El	No tiene tendencia estadísticamente significativa
Puerto Giraldo	No tiene tendencia estadísticamente significativa
Salamina	No tiene tendencia estadísticamente significativa
San Estanislao	Tiene tendencia creciente estadísticamente significativa
San José	No tiene tendencia estadísticamente significativa
San Rafael	No tiene tendencia estadísticamente significativa
Usiacurí	No tiene tendencia estadísticamente significativa

Fuente: SGS Colombia, 2021

Tabla 3.2.4-20 Resultados pruebas Mann-Kendall para caudal

ESTACIÓN	TENDENCIA - MANN KENDALL
Calamar	No tiene tendencia estadísticamente significativa

Fuente: SGS Colombia, 2021

3.2.4.8.4 Llenado de datos faltantes

El llenado de datos faltantes de los datos de precipitación se desarrolló con el método de la Razón – Normal (Monsalve Sáenz, 1999), que se representa como una suma de proporciones a partir de las estaciones con datos. La siguiente es la ecuación utilizada:

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

$$P_X = \frac{1}{n} \left[\left(\frac{N_X}{N_1} \right) P_1 + \left(\frac{N_X}{N_2} \right) P_2 + \dots + \left(\frac{N_X}{N_n} \right) P_n \right]$$

Donde:

Px: Precipitación a calcular en mm,

n: número de estaciones auxiliares con datos,

Nx: precipitación media anual de la estación a calcular en mm,

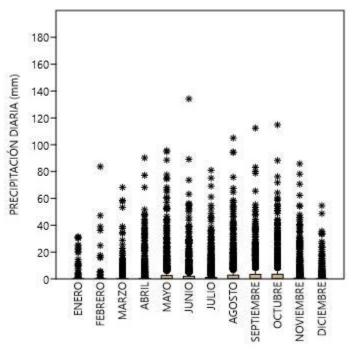
 P_1 a P_n : precipitación de las estaciones auxiliares durante el periodo de tiempo a completar en mm, y

N₁ a N_n: precipitación media anual de las estaciones auxiliares en mm.

En el AnexoF carteras de campo-hidrilogia— Análisis Estadístico y Tratamiento de Datos se presentan los cálculos del llenado de las estaciones de precipitación.

La estación de caudal Calamar se llenó con la información media mensual, teniendo en cuenta que no hay estaciones de caudal de referencia que sirvan para el llenado. El proceso de llenado se presenta en el Anexo F– Análisis Estadístico y Tratamiento de Datos.

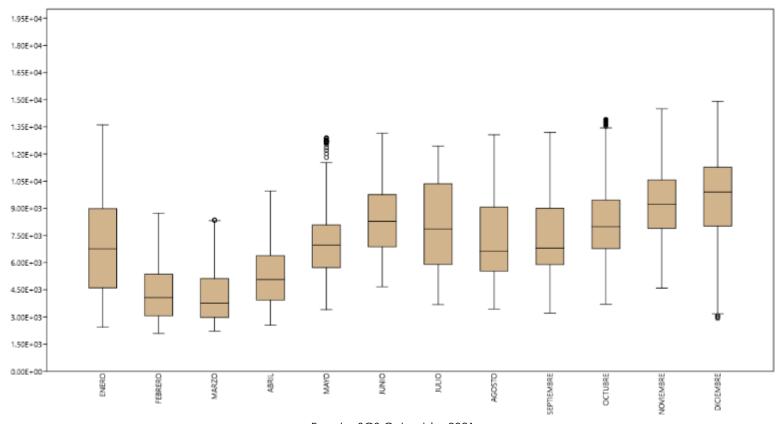
3.2.4.8.5 Representación de series hidroclimatológicas con diagramas de cajas y bigotes


Los diagramas de cajas y bigotes son una representación de las series que permite reconocer la dispersión de los datos. En la **Figura 3.2.4-50** se presenta a modo de ejemplo el diagrama de cajas y bigotes de la precipitación de la estación Normal Manatí - Automática. Se muestra que la gran mayoría de los datos se encuentran en torno a 0 mm, relacionado con una zona de bajas precipitaciones.

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

Figura 3.2.4-50 Diagrama de cajas y bigotes precipitación estación Normal Manatí – Automática (1991 – 2020)


Fuente: SGS Colombia, 2021

En la **Figura 3.2.4-51** se presenta el diagrama de cajas y bigotes del caudal en la estación Calamar sobre el río Magdalena, encontrando un régimen monomodal con caudales elevados entre mayo y enero, bajos entre febrero y abril.

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

Figura 3.2.4-51 Diagrama de cajas y bigotes caudal estación Calamar (1991 – 2020)

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

3.2.4.8.6 Correlación con la ocurrencia de fenómenos macroclimáticos (ENOS)

El clima en Colombia es afectado por fenómenos climáticos globales, por ejemplo, El Niño Oscilación del Sur – ENOS, entre otras (Poveda, y otros, 2002).

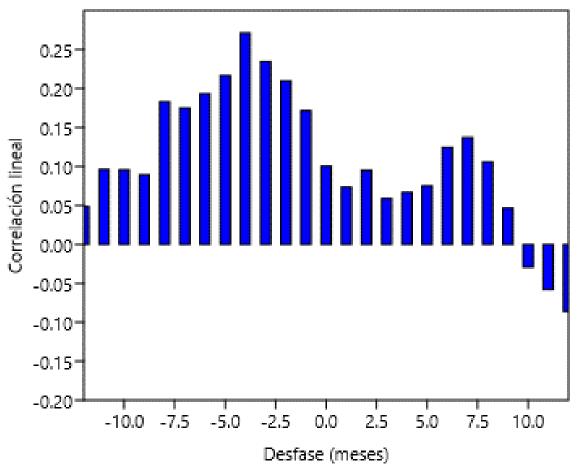
Se realiza una verificación de la correlación de los fenómenos macroclimáticos con el fin de identificar la posible incidencia que estos tengan sobre la hidrología en el área de influencia y la región circundate.

La ocurrencia del ENOS se estudia a través de diversos índices, uno de ellos es el índice de Oscilación Estándar – SOI (por sus siglas en inglés), que es una media móvil de 3 meses sobre las anomalías de temperatura en las regiones 3.4 de El Niño (Poveda, y otros, 2002). Una anomalía positiva de superior de +0.5 °C sostenida por más de cinco trimestres seguidos configura un evento Niño, mientras que una anomalía negativa superior de -0.5 °C sostenida por cinco trimestres seguidos configura un evento Niña.

La serie del SOI se recuperó de la página web del Climate Prediction Center, National Weather Service de la National Oceanic and Atmospheric Administration de los Estados Unidos de América¹⁴.

Se construyeron gráficas de correlación lineal para reconocer la correlación entre el régimen hidroclimatológico del área de influencia y la región circundante. Para que se evidencie una relación entre las series analizadas es necesario que la magnitud de la correlación lineal sea mayor que 0.5. En la **Figura 3.2.4-52** se presenta el correlograma entre el índice SOI y la precipitación de la estación Campanos Los. Se puede notar que la correlación lineal calculada es de cerca de 0.25, lo que implica que no hay información suficiente para encontrar una relación estadísticamente representativa entre dichos fenómenos y la precipitación de la estación Campanos.

-

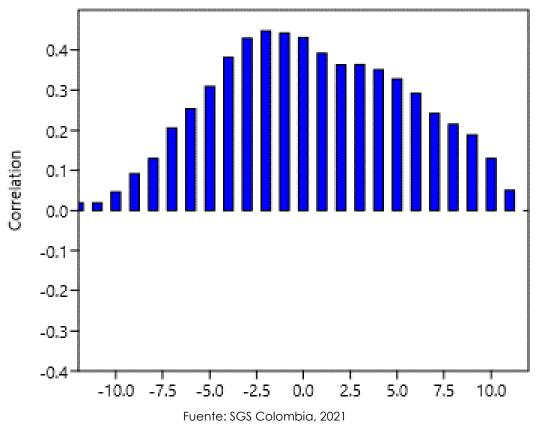

¹⁴ Link: https://www.cpc.ncep.noaa.gov/

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

Figura 3.2.4-52 Correlograma lineal entre la precipitación mensual en la estación Los Campanos y el índice SOI (1991 – 2020)

Fuente: SGS Colombia, 2021


En la **Figura 3.2.4-53** se presenta el correlograma entre el índice SOI y el caudal de la estación Calamar. Se puede notar que la correlación lineal calculada es de cerca de 0.40, lo que implica que no hay información suficiente para encontrar una relación estadísticamente representativa entre dicho fenómeno y el caudal de la estación Calamar.

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

Figura 3.2.4-53 Correlograma lineal entre la precipitación mensual en la estación Campanos Los y el índice SOI (1991 – 2020)

En la **Tabla 3.2.4-21** se presentan los resultados de correlación lineal para todas las series de análisis.

Tabla 3.2.4-21 Correlación lineal entre las series de análisis y el SOI

ESTACIÓN	VARIABLE	DOMINIO CORRELACIÓN LINEAL	CONCEPTO CORRELACIÓN SOI Y P
Campanos Los	Precipitación	[-0.1, 0.26]	Sin correlación estadísticamente significativa
Candelaria	Precipitación	[-0.13, 0.16]	Sin correlación estadísticamente significativa
Casa de Bombas	Precipitación	[-0.06, 0.25]	Sin correlación estadísticamente significativa
Hibacharo	Precipitación	[-0.03, 0.23]	Sin correlación estadísticamente significativa
Juan de Acosta	Precipitación	[-0.05, 0.27]	Sin correlación estadísticamente significativa

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

ESTACIÓN	VARIABLE	DOMINIO CORRELACIÓN LINEAL	CONCEPTO CORRELACIÓN SOI Y P
Leña	Precipitación	[-0.07, 0.19]	Sin correlación estadísticamente significativa
Lomagrande	Precipitación	[-0.07, 0.22]	Sin correlación estadísticamente significativa
Montebello	Precipitación	[-0.1, 0.25]	Sin correlación estadísticamente significativa
Normal Manatí - Automática	Precipitación	[-0.12, 0.18]	Sin correlación estadísticamente significativa
Piojo	Precipitación	[-0.1, 0.24]	Sin correlación estadísticamente significativa
Porvenir El	Precipitación	[-0.04, 0.23]	Sin correlación estadísticamente significativa
Puerto Giraldo	Precipitación	[-0.1, 0.24]	Sin correlación estadísticamente significativa
Salamina	Precipitación	[-0.04, 0.20]	Sin correlación estadísticamente significativa
San Estanislao	Precipitación	[-0.06, 0.18]	Sin correlación estadísticamente significativa
San José	Precipitación	[-0.1, 0.25]	Sin correlación estadísticamente significativa
San Rafael	Precipitación	[-0.14, 0.25]	Sin correlación estadísticamente significativa
Usiacurí	Precipitación	[-0.05, 0.23]	Sin correlación estadísticamente significativa
Calamar	Caudal	[0, 0.41]	Sin correlación estadísticamente significativa

Fuente: SGS Colombia, 2021

El resultado global es que no se encuentra correlación estadísticamente significativa ente las series hidroclimatológicas analizadas y el fenómeno El Niño Oscilación del Sur.

SGS ETSA ESTUDIOS TÉCNICOS

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

3.2.4.8.7 Estadística básica de las series hidroclimatológicas

Se calcularon estadísticos de tendencia media y de dispersión con el fin de tener una línea base del comportamiento de las variables climáticas de análisis en el área de influencia (ver **Tabla 3.2.4-22**). Se reconoce que la precipitación media diaria tiene de manera general un valor medio de 3 mm, una mediana de 0 mm, mientras la desviación estándar tiene un valor cercano a 10 mm y varianza media aproximada de 100 mm². La curtosis de la precipitación tiene en todos los casos valores positivos superiores que 20 mm⁴, lo que indica una curva de asimetría positiva que acusa la concentración de datos hacia 0 mm (este hallazgo se refuerza porque la mediana es menor que el promedio). El valor medio de caudal es de 7140.82 m³/s, la mediana es de 6938 m³/s, mientras la desviación estándar es de 2716 m³/s y la curtosis es de -0.49 (m³/s)⁴, lo que implica que es una serie cuasi-simétrica con una leve asimetría negativa, es decir mayor acumulación de datos por encima del promedio (acusado porque la mediana es menor que el promedio).

Tabla 3.2.4-22 Estadísticos básicos de las series hidroclimatológicas

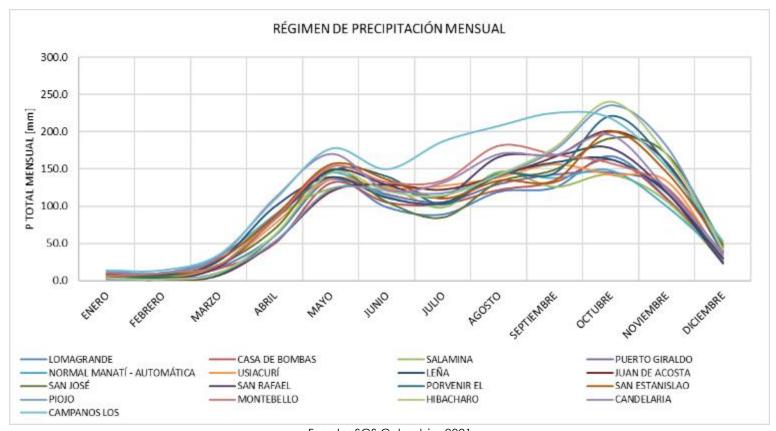
ESTACIÓN	VARIABLE	PROMEDIO (mm)	DESVIACIÓN ESTÁNDAR (mm)	VARIANZA (mm²)	CURTOSIS (mm ⁴)	MEDIANA (mm)
USIACURÍ	Precipitación	3,00	9,39	88,16	35,43	0
SAN RAFAEL	Precipitación	3,14	10,62	112,68	24,71	0
SAN JOSÉ	Precipitación	3,12	9,81	96,14	86,92	0
SALAMINA	Precipitación	2,74	9,99	99,87	33,40	0
PUERTO GIRALDO	Precipitación	2,86	9,85	96,92	35,70	0
PORVENIR EL	Precipitación	3,20	10,83	117,25	31,65	0
PIOJO	Precipitación	3,28	10,65	113,38	33,61	0
NORMAL MANATÍ - AUTOMÁTICA	Precipitación	2,91	9,05	81,92	34,23	0
MONTEBELLO	Precipitación	3,31	10,17	103,43	28,93	0
LOMAGRANDE	Precipitación	2,62	8,70	75,60	39,83	0
LEÑA	Precipitación	3,03	10,47	109,51	33,29	0

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

ESTACIÓN	VARIABLE	PROMEDIO (mm)	DESVIACIÓN ESTÁNDAR (mm)	VARIANZA (mm²)	CURTOSIS (mm ⁴)	MEDIANA (mm)
JUAN DE ACOSTA	Precipitación	3,12	10,17	103,50	39,26	0
HIBACHARO	Precipitación	3,36	10,78	116,24	30,93	0
CASA DE BOMBAS	Precipitación	2,67	9,08	82,47	37,74	0
CANDELARIA	Precipitación	3,51	11,39	129,78	23,65	0
CAMPANOS LOS	Precipitación	4,21	12,60	158,76	20,03	0
CALAMAR	Caudal	7140,82	2716,29	7377536,30	-0,49	6938,00

Fuente: SGS Colombia, 2021


3.2.4.8.8 Régimen de precipitaciones y caudal

El régimen de precipitación mensual (ver **Figura 3.2.4-54**) indica que hay un comportamiento monomodal sostenido de altas precipitaciones entre mayo y noviembre, con un máximo local en mayo y un máximo global en octubre

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

Figura 3.2.4-54 Régimen de precipitación mensual estaciones de análisis

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

El régimen de caudal en el río Magdalena es monomodal sostenido entre mayo y diciembre, con un caudal medio mínimo 4100 m³/s (marzo) y 9660 m³/s (diciembre), medio mínimo entre 2478 m³/s (febrero) y 5661 m³/s (noviembre), y medio máximo entre 7315 m³/s (febrero) y 14438 m³/s (diciembre.)

RÉGIMEN CAUDAL ESTACIÓN CALAMAR (1991 - 2020)

16000.00
14000.00
12000.00
8000.00
6000.00
2000.00
0.00

LINERO INARIO RERIU NARIO JUNIO JUNIO OCCUPRENTARE CONTROLLERARE
PROMEDIO (m3/s) MÁXIMO (m3/s) MÍNIMO (m3/s)

Figura 3.2.4-55 Régimen de precipitación mensual estación de análisis

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

3.2.4.9 Balance hídrico de largo plazo

El balance hídrico de largo plazo se utiliza para estimar la oferta hídrica o escorrentía producida en una zona específica. Su formulación teórica está fundamentada en el principio de conservación de la masa aplicada a una escala de tiempo igual a un año hidrológico medio (Organización Meteorológica Mundial - OMM, 2011).

La ecuación diferencial que gobierna el principio de conservación de masa es la siguiente:

$$\frac{dS}{dt} = I - O$$

Donde:

 $\frac{ds}{dt}$: es la variación del almacenamiento de agua en la cuenca con respecto al tiempo,

I: flujo de entrada de agua a la cuenca desde la atmósfera u otras cuencas,

O: flujo de salida de agua de la cuenca hacia otras cuencas o a la atmósfera.

La presunción en la que se basa el balance hídrico de largo plazo es la invariabilidad del almacenamiento a escala anual. Por lo anterior la ecuación de balance hídrico toma la forma:

$$0 = I - O$$

Reorganizando términos

$$I = 0$$

La ecuación anterior se puede escribir de la siguiente manera desglosando las entradas y las salidas:

$$P = ETR + Q$$

Donde:

P: lámina de precipitación en mm,

ETR: lámina de evapotranspiración real en mm,

Q: lámina de agua generada por el caudal total medido en el punto de cierre de la cuenca en mm,

Versión No. 1. 07.2022

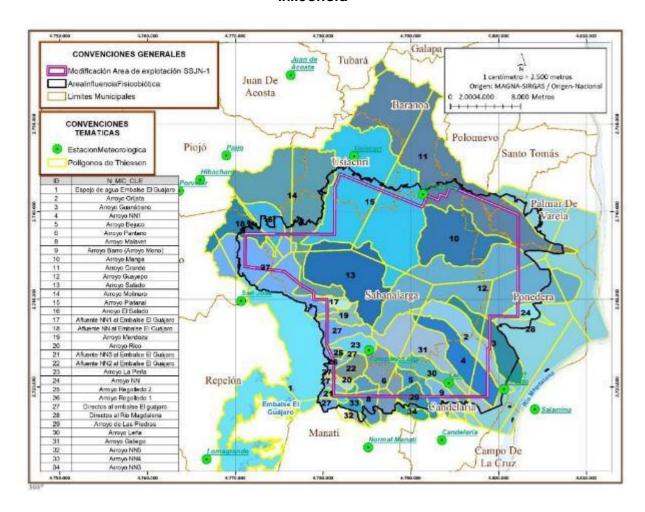
CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

En conclusión, el caudal medio se puede estimar como:

$$Q = P - ETR$$

Se utilizó la información de precipitación calculada en el análisis estadístico de la información hidroclimatológica y la evapotranspiración temperatura reportada en el capítulo de clima.

3.2.4.9.1 Precipitación


La precipitación representativa de las cuencas fue estimada a partir del método de los polígonos de Thiessen. En la **Figura 3.2.4-56** se presentan los polígonos de Thiessen construidos a partir de las estaciones de precipitación disponibles. En la **Tabla 3.2.4-23** se presentan las áreas representativas de cada estación sobre las unidades hidrográficas delimitadas en el área de influencia. Cabe anotar que en esta tabla aparecen 16 estaciones (no 17) con aferencia de su polígono frente a las 33 subcuencas. Esta relativa "pérdida" de una estación se debe a que la estación Estanislao se ubica al suroccidente de dos estaciones lo que implica que el polígono formado por Estanislao se corta con las otras dos estaciones y no abarca su polígono sobre el área de influencia AI.

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

Figura 3.2.4-56 Polígonos de Thiessen sobre las cuencas hidrográficas del área de influencia

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

Tabla 3.2.4-23 Proporción de representación de las estaciones de precipitación sobre las unidades hidrográficas

						P	ROPORCI	ÓN REPRE	SENTATI	VA DE L	A ESTACIÓ	N					
Cuenca	CAMPANOS LOS	CANDELARIA [29040260]	CASA DE BOMBAS	HIBACHARO [14010020]	JUAN DE ACOSTA	LENA [29040200]	LOMA GRANDE [29030270]	MONTEBELLO [29040020]	NORMAL MANATI	PIOJO [14010010]	PORVENIR EL [14010090]	PTO GIRALDO [29040300]	SALAMINA [29050020]	SAN JOSE [29030140]	SAN RAFAEL [29060540]	USIACURI [29040240]	Total general
Afluente NN al Embalse El Guájaro	0,000	0,000	0,000	0,858	0,000	0,000	0,000	0,000	0,000	0,003	0,138	0,000	0,000	0,000	0,000	0,000	1,000
Afluente NN1 al Embalse El Guájaro	1,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	1,000
Afluente NN2 al Embalse El Guájaro	1,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	1,000
Afluente NN3 al Embalse El Guájaro	0,509	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,491	0,000	0,000	0,000	0,000	0,000	0,000	0,000	1,000
Arroyo Barro (Arroyo Mono)	0,000	0,220	0,000	0,000	0,000	0,780	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	1,000
Arroyo Bejuco	0,000	0,091	0,000	0,000	0,000	0,909	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	1,000
Arroyo de Las Piedras	0,000	0,163	0,000	0,000	0,000	0,833	0,000	0,000	0,004	0,000	0,000	0,000	0,000	0,000	0,000	0,000	1,000
Arroyo El Salado	0,000	0,000	0,000	0,107	0,000	0,000	0,000	0,000	0,000	0,893	0,000	0,000	0,000	0,000	0,000	0,000	1,000
Arroyo Gallego	0,373	0,000	0,000	0,000	0,000	0,537	0,000	0,000	0,000	0,000	0,000	0,090	0,000	0,000	0,000	0,000	1,000
Arroyo Grande	0,000	0,000	0,000	0,000	0,010	0,000	0,000	0,727	0,000	0,000	0,000	0,000	0,000	0,000	0,014	0,249	1,000
Arroyo Guanábano	0,000	0,000	0,000	0,000	0,000	0,259	0,000	0,000	0,000	0,000	0,000	0,741	0,000	0,000	0,000	0,000	1,000

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

	PROPORCIÓN REPRESENTATIVA DE LA ESTACIÓN																
Cuenca	CAMPANOS LOS	CANDELARIA [29040260]	CASA DE BOMBAS	HIBACHARO [14010020]	JUAN DE ACOSTA	LENA [29040200]	LOMA GRANDE [29030270]	MONTEBELLO [29040020]	NORMAL MANATI	PIOJO [14010010]	PORVENIR EL [14010090]	PTO GIRALDO [29040300]	SALAMINA [29050020]	SAN JOSE [29030140]	SAN RAFAEL [29060540]	USIACURI [29040240]	Total general
Arroyo Guayepo	0,189	0,000	0,000	0,000	0,000	0,156	0,000	0,290	0,000	0,000	0,000	0,299	0,000	0,000	0,066	0,000	1,000
Arroyo La Peña	1,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	1,000
Arroyo Leña	0,041	0,038	0,000	0,000	0,000	0,883	0,000	0,000	0,000	0,000	0,000	0,038	0,000	0,000	0,000	0,000	1,000
Arroyo Malavet	0,334	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,666	0,000	0,000	0,000	0,000	0,000	0,000	0,000	1,000
Arroyo Manga	0,000	0,000	0,000	0,000	0,000	0,000	0,000	1,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	1,000
Arroyo Mendoza	1,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	1,000
Arroyo Molinero	0,214	0,000	0,000	0,001	0,000	0,000	0,000	0,221	0,000	0,124	0,000	0,000	0,000	0,000	0,000	0,440	1,000
Arroyo NN	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	1,000	0,000	0,000	0,000	0,000	1,000
Arroyo NN1	0,016	0,000	0,000	0,000	0,000	0,638	0,000	0,000	0,000	0,000	0,000	0,345	0,000	0,000	0,000	0,000	1,000
Arroyo NN2	0,000	1,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	1,000
Arroyo NN3	0,000	0,490	0,000	0,000	0,000	0,178	0,000	0,000	0,332	0,000	0,000	0,000	0,000	0,000	0,000	0,000	1,000
Arroyo NN4	0,153	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,847	0,000	0,000	0,000	0,000	0,000	0,000	0,000	1,000
Arroyo NN5	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	1,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	1,000
Arroyo NN6	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	1,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	1,000
Arroyo Orijata	0,030	0,000	0,000	0,000	0,000	0,623	0,000	0,000	0,000	0,000	0,000	0,347	0,000	0,000	0,000	0,000	1,000
Arroyo Pantano	0,545	0,000	0,000	0,000	0,000	0,173	0,000	0,000	0,282	0,000	0,000	0,000	0,000	0,000	0,000	0,000	1,000
Arroyo Platanal	0,026	0,000	0,000	0,000	0,000	0,000	0,000	0,420	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,554	1,000
Arroyo Regolledo 1	1,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	1,000
Arroyo Regolledo 2	1,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	1,000

Versión No. 1. 07.2022

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

	PROPORCIÓN REPRESENTATIVA DE LA ESTACIÓN																
Cuenca	CAMPANOS LOS	CANDELARIA [29040260]	CASA DE BOMBAS	HIBACHARO [14010020]	JUAN DE ACOSTA	LENA [29040200]	LOMA GRANDE [29030270]	MONTEBELLO [29040020]	NORMAL MANATI	PIOJO [14010010]	PORVENIR EL [14010090]	PTO GIRALDO [29040300]	SALAMINA [29050020]	SAN JOSE [29030140]	SAN RAFAEL [29060540]	USIACURI [29040240]	Total general
Arroyo Rico	1,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	1,000
Arroyo Salado	0,856	0,000	0,000	0,000	0,000	0,000	0,000	0,064	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,080	1,000
Directos al embalse El guájaro	0,519	0,000	0,000	0,319	0,000	0,000	0,000	0,000	0,036	0,039	0,080	0,000	0,000	0,000	0,000	0,008	1,000
Directos al Río Magdalena	0,000	0,015	0,000	0,000	0,000	0,000	0,000	0,169	0,000	0,000	0,000	0,339	0,140	0,000	0,337	0,000	1,000
Espejo de agua Embalse El Guájaro	0,481	0,000	0,017	0,011	0,000	0,000	0,002	0,000	0,019	0,000	0,000	0,000	0,000	0,470	0,000	0,000	1,000

Versión No. 0. 12.2021

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

Seguidamente se construyeron las series de precipitación diaria representativa para cada cuenca, de donde se estimó el valor representativo de la precipitación total anual (ver **Tabla 3.2.4-24**) que se utilizó en el balance hídrico.

Tabla 3.2.4-24 Precipitación representativa de las unidades hidrográficas en el área de influencia.

UNIDAD HIDROGRÁFICA	P MEDIA ANUAL (mm)							
Afluente NN al Embalse El Guájaro	1218,0							
Afluente NN1 al Embalse El Guájaro	1536,9							
Afluente NN2 al Embalse El Guájaro	1536,9							
Afluente NN3 al Embalse El Guájaro	1304,9							
Arroyo Barro (Arroyo Mono)	1145,3							
Arroyo Bejuco	1122,8							
Arroyo de Las Piedras	1135,2							
Arroyo El Salado	1200,3							
Arroyo Gallego	1261,7							
Arroyo Grande	1179,2							
Arroyo Guanábano	1059,7							
Arroyo Guayepo	1201,3							
Arroyo La Peña	1536,9							
Arroyo Leña	1128,9							
Arroyo Malavet	1222,1							
Arroyo Manga	1208,6							
Arroyo Mendoza	1536,9							
Arroyo Molinero	1228,3							
Arroyo NN	1092,0							
Arroyo NN1	1280,3							
Arroyo NN3	1177,8							
Arroyo NN5	1064,4							
Arroyo Orijata	1098,0							
Arroyo Pantano	1329,1							
Arroyo Platanal	1155,0							
Arroyo Regolledo 1	1536,9							
Arroyo Regolledo 2	1536,9							
Arroyo Rico	1536,9							
Arroyo Salado	1480,7							
Directos al embalse El Guájaro	1375,1							
Directos al Río Magdalena	1103,8							
Espejo de agua Embalse El Guájaro	1327,3							

Versión No. 0. 12.2021

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

Asimismo, se construyeron las isoyetas de precipitación total anual para evidenciar el comportamiento espacial de la variable. Se observa que la zona contigua al embalse El Guájaro tiene los valores más elevados en la estación Campanos Los (1593 mm), posiblemente por un efecto orográfico generado por el cerro que divide las aguas que escurren a embalse y al río Magdalena en inmediaciones de La Peña y La Aguada de Pablo. En el resto de la zona no se observan mayores cambios y se encuentran en el rango 950 mm y 1300 mm.

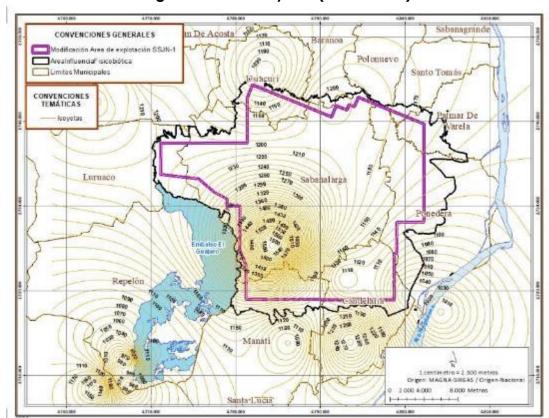


Figura 3.2.4-57 Isoyetas (1990 – 2020)

Fuente: SGS Colombia, 2021

3.2.4.9.2 Evapotranspiración potencial y real

Para el cálculo de la evapotranspiración potencial se utilizaron dos métodos que fueron seleccionados por la disponibilidad de información y porque han sido ampliamente usados y verificados en Colombia y el mundo. El primero es Thorntwaite (Chow, Maidment, & Mays, 1988) y el segundo es García y López (García & López, 1970).

Versión No. 0. 12.2021

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

El método Thorntwaite se aplica de la siguiente manera¹⁵.

Se determina el índice de calor mensual (i) a partir de la temperatura media mensual (t):

$$i = \left(\frac{t}{5}\right)^{1.514}$$

Los datos de temperatura media se extrajeron la de estación Aeropuerto E. Cortissoz de Barranquilla (29045020) desde el año 1991 al año 2017.

Luego se calcula el índice de calor Anual (I) sumando los 12 valores de i:

$$I = \sum i$$

Se calcula el factor a:

$$a = 675 * 10^{-9} * I^3 - 771 * 10^{-7} * I^2 + 1792 * 10^{-5} * I + 0.49239$$

Se sigue con la estimación de la evapotranspiración mensual "sin corregir" mediante la fórmula:

$$ETP(sin\ Corregir) = 16\left(\frac{10*t}{I}\right)^a$$

Y por último se hace la corrección para el número de días del mes y el número de horas de sol.

$$ETP = ETP(Sin\ corregir) * \frac{N}{12} * \frac{D}{30}$$

Dónde:

ETP(sin Corregir): Evapotranspiración potencial a nivel mensual en mm/mes, para meses de 30 días y 12 horas de sol teóricas.

¹⁵ CHOW, V. T, MAIDMENT, D. R. Y MAYS, L. W. Applied Hidrology. Ed. McGraw-Hill International Editions, Civil Engineering Series. Nueva York, Estados Unidos. 1988.

Versión No. 0. 12.2021

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

t: Temperatura Media Mensual °C.

I: Índice de Calor Anual.

ETP: Evapotranspiración Corregida.

N: Número máximo de horas de sol, depende del mes y de la Latitud.

D: Número de días del mes.

El método García y López se calcula como sigue:

$$ETP = 1.21 \times 10^{F_t} (1 - 0.01 \times HR_D) + 0.21 \times t - 2.3$$

Donde:

ETP: evapotranspiración potencial mensual en mm,

Ft: factor de temperatura calculado como $F_t = \frac{7.45 \times t}{234.7 + t}$

 HR_D : Humedad relativa diurna en %, se asume como la humedad relativa media mensual.

Los valores a utilizar de la humedad relativa se tomaron de la estación Normal Manatí (29035080) del municipio de Manatí.

La evapotranspiración real representa la cantidad real de agua que sale de la cuenca por evaporación y transpiración, teniendo en cuenta las condiciones de humedad, imperantes en la zona. En este proyecto se seleccionó la metodología Budyko, ya que es ampliamente utilizada y ha sido probada en un sin número de estudios en todo el mundo, entre ellos el ENA 2010¹⁶ y el ENA 2014¹⁷.

El método Budyko para el cálculo de la evapotranspiración real, el cual consiste en la siguiente expresión:

$$ETR = \sqrt{\left[\left(ETP \times P \times Tanh\left(\frac{P}{ETP}\right)\right) \times \left(1 - Cosh\left(\frac{ETP}{P}\right) + Senh\left(\frac{ETP}{P}\right)\right)\right]}$$

Donde:

ETR = Evapotranspiración real mensual mm,

ETP = Evapotranspiración potencial mm,

P = Precipitación total mensual mm.

Lewis Energy Colombia, Inc.

¹⁶ INSTITUTO DE HIDROLOGÍA, METEOROLOGÍA Y ESTUDIOS AMBIENTALES – IDEAM. Estudio Nacional del Agua. Bogotá D.C., Colombia. 2010.

¹⁷ INSTITUTO DE HIDROLOGÍA, METEOROLOGÍA Y ESTUDIOS AMBIENTALES – IDEAM. Estudio Nacional del Agua. Op. Cit. 2015.

Versión No. 0. 12.2021

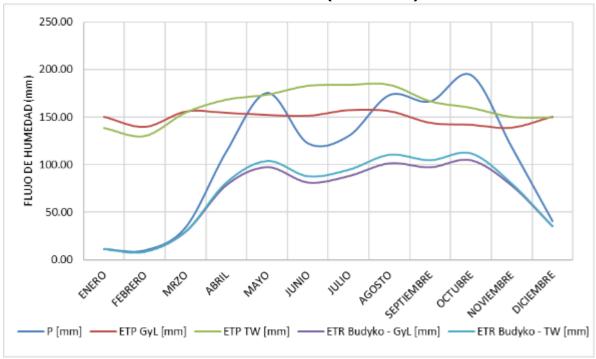
CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

Se realizó el cálculo de la evapotranspiración potencial a partir de los valores de temperatura media y humedad relativa de la estación Normal Manatí – Automática tomados del componente climático del presente EIA. Los resultados de la ETP y ETR mensual para la estación Candelaria se presentan en la **Tabla 3.2.4-25** a modo de ejemplo y en el Anexo F_carteras de campo_hidrologia—Evapotranspiración Potencial y Real se presentan la totalidad de los cálculos realizados.

Tabla 3.2.4-25 Régimen mensual de la evapotranspiración potencial y real estación Candelaria (1991 – 2017)

PARÁMETRO	P [mm]	ETP GyL [mm]	ETP TW [mm]	ETR Budyko - GyL [mm]	ETR Budyko - TW [mm]
ENERO	11,44	150,32	138,34	11,20	11,11
FEBRERO	9,99	139,75	129,95	8,47	8,44
MRZO	34,14	155,67	154,59	29,30	29,63
ABRIL	113,80	154,40	168,23	78,22	81,08
MAYO	175,55	152,22	173,47	97,12	103,82
JUNIO	122,67	151,26	182,87	81,10	87,74
JULIO	130,35	157,15	183,94	87,74	94,59
AGOSTO	173,37	156,09	183,85	101,18	110,36
SEPTIEMBRE	166,63	143,98	166,59	97,01	104,66
OCTUBRE	194,45	141,91	159,66	104,42	111,81
NOVIEMBRE	118,55	139,09	150,07	77,84	79,94
DICIEMBRE	40,71	150,54	149,30	35,07	35,23
ANUAL	1291,67	1792,39	1940,86	808,68	858,40

Fuente: SGS Colombia, 2021


En la **Figura 3.2.4-58** se presenta el régimen de P, ETP y ETR de la estación Candelaria a modo de ejemplo. Se nota que la evapotranspiración potencial es mayor que la precipitación en la gran mayoría del año, teniendo una mayor disponibilidad de agua entre agosto y noviembre.

Versión No. 0. 12.2021

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

Figura 3.2.4-58 Régimen mensual de la evapotranspiración potencial y real estación Candelaria (1991 – 2017)

Fuente: SGS Colombia, 2021

Se encontró que la ETP por el método García y López, y Thorntwaite tienen valores similares, lo que refuerza la capacidad de ambas metodologías en la zona de estudio. En concordancia, se definió como la ETP calculada por el método García y López como la representativa teniendo en cuenta que usa la humedad relativa además de la temperatura, siendo esta una variable muy importante para la zona, donde se tienen valores elevados (alrededor de 80 %) que condicionan el proceso físico de la evaporación. A partir de ello, se señala que, para el balance hídrico a largo plazo de cada cuenca sujeta a estudio, se utilizan estas estimaciones de García y López especialmente, el valor medio anual de 1792 mm de la **Tabla 3.2.4-25**.

Asimismo, se construyó la variación espacial de la evapotranspiración real total anual. Se observa una baja variación espacial de la evapotranspiración real, con rangos entre 670 mm y 900 mm. El foco de mayor ETR está asociado al máximo de precipitación disponible en la estación Campanos Los.

Versión No. 0. 12.2021

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

CONVENCIONES GENERALES

Massiciones Avas de explatación SERV-1

Avairdusenta a accidantes

CONVENCIONES

TEMÁTICAS

Evapolitamina ración

Repelon

Repelon

Repelon

Maniali

Amania

Sintina de contra de con

Figura 3.2.4-59 Variación espacial de la evapotranspiración real

Fuente: SGS Colombia, 2021

3.2.4.9.3 Balance hídrico de largo plazo

Una vez se procesó y analizó la información base del balance hídrico, se realizó el cálculo de la lámina de escorrentía y el caudal medio en las unidades hidrográficas definidas en el área del proyecto.

En la **Tabla 3.2.4-26** se presenta el balance hídrico calculado. En el Anexo F_carteras de campo_hidrologia— Balance Hídrico se presentan los cálculos que soportan el balance hídrico. Para resumir el procedimiento, la precipitación es producto del área aferente por polígono de Thiessen de las estaciones cercanas, la ETP corresponde al método García-López utilizando únicamente los datos de humedad relativa de la estación Normal Manatí, la ETR corresponde al método Budiko que utiliza la precipitación y ETR mencionadas anteriormente.

Tabla 3.2.4-26 Balance hídrico de largo plazo (1991 – 2017)

UNIDAD HIDROGRÁFICA	P (mm)	ETP (mm)	ETR (mm)	P-ETR (mm)	ÁREA (ha)	Qm (m3/s)	Qm (I/s)
Afluente NN al Embalse El Guájaro	1218,0	1792,4	997,2	220,8	1709,1	0,120	119,6
Afluente NN1 al Embalse El Guájaro	1536,9	1792,4	1148,0	388,9	392,7	0,048	48,4

Versión No. 0. 12.2021

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

UNIDAD HIDROGRÁFICA	P (mm)	ETP (mm)	ETR (mm)	P-ETR (mm)	ÁREA (ha)	Qm (m3/s)	Qm (l/s)
Afluente NN2 al Embalse El Guájaro	1536,9	1792,4	1148,0	388,9	780,1	0,096	96,1
Afluente NN3 al Embalse El Guájaro	1304,9	1792,4	1042,2	262,7	224,4	0,019	18,7
Arroyo Barro (Arroyo Mono)	1145,3	1792,4	957,1	188,2	712,1	0,042	42,5
Arroyo Bejuco	1122,8	1792,4	944,2	178,6	864,8	0,049	48,9
Arroyo de Las Piedras	1135,2	1792,4	951,3	183,8	832,6	0,049	48,5
Arroyo El Salado	1200,3	1792,4	987,7	212,7	1412,2	0,095	95,2
Arroyo Gallego	1261,7	1792,4	1020,2	241,5	3678,4	0,281	281,5
Arroyo Grande	1179,2	1792,4	976,1	203,1	18528,2	1,192	1192,4
Arroyo Guanábano	1059,7	1792,4	906,9	152,9	2233,7	0,108	108,2
Arroyo Guayepo	1201,3	1792,4	988,2	213,1	11278,5	0,762	761,6
Arroyo La Peña	1536,9	1792,4	1148,0	388,9	865,9	0,107	106,7
Arroyo Leña	1128,9	1792,4	947,7	181,2	1600,9	0,092	91,9
Arroyo Malavet	1222,1	1792,4	999,4	222,7	1065,1	0,075	75,2
Arroyo Manga	1208,6	1792,4	992,2	216,5	4560,2	0,313	312,8
Arroyo Mendoza	1536,9	1792,4	1148,0	388,9	667,1	0,082	82,2
Arroyo Molinero	1228,3	1792,4	1002,7	225,6	29129,5	2,082	2082,4
Arroyo NN	1092,0	1792,4	926,2	165,8	657,2	0,035	34,5
Arroyo NN1	1280,3	1792,4	1029,8	250,5	2813,4	0,223	223,3
Arroyo NN3	1177,8	1792,4	975,3	202,5	522,7	0,034	33,5
Arroyo NN4	1136.7	1792.4	952.2	184.5	548.6	0.032	32.1
Arroyo NN5	1064,4	1792,4	909,7	154,7	174,9	0,009	8,6
Arroyo Orijata	1098,0	1792,4	929,7	168,2	2624,0	0,140	139,9
Arroyo Pantano	1329,1	1792,4	1054,2	274,9	2115,2	0,184	184,3
Arroyo Platanal	1155,0	1792,4	962,6	192,4	14472,9	0,883	882,5
Arroyo Regolledo 1	1536,9	1792,4	1148,0	388,9	32,3	0,004	4,0
Arroyo Regolledo 2	1536,9	1792,4	1148,0	388,9	97,9	0,012	12,1
Arroyo Rico	1536,9	1792,4	1148,0	388,9	293,1	0,036	36,1
Arroyo Salado	1480,7	1792,4	1124,2	356,5	5677,6	0,641	641,5
Directos al embalse El guájaro	1375,1	1792,4	1076,3	298,8	7590,3	0,719	718,6
Directos al Río Magdalena	1103,8	1792,4	933,2	170,6	16220,2	0,877	877,1
Espejo de agua Embalse El Guájaro	1327,3	1792,4	1053,3	274,0	11303,5	0,981	981,5

Fuente: SGS Colombia, 2021

Se encontraron láminas de escorrentía entre 146,4 mm y 388,9 mm, con un valor medio de 246,3 mm. Estos valores de escorrentía representan entre el 8 % y el 22 %

Versión No. 0. 12.2021

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

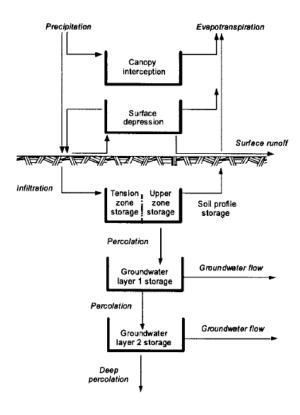
de la precipitación, lo que acusa la gran pérdida de humedad que se da a través de la evapotranspiración en el área de estudio.

3.2.4.10 Régimen hidrológico de caudales medios

El régimen hidrológico predominante en el área de estudio está dado por las formaciones vegetales y condiciones climáticas propias de la zona de vida característica de la región. En el Anexo_F_carteras de campo_hidrologia – Régimen y Extremos Unidades Hidrográficas se consignan los resultados del régimen hidrológico.

El cálculo de caudal debe realizarse a partir de datos de registro de estaciones de mediciones de caudal como lo son las estaciones limnigráficas o limnimétricas, sin embargo, los drenajes localizados en el área de estudio no poseen estaciones de medición de caudal en su cauce, por lo tanto, se estimaron los caudales característicos a partir de la aplicación del modelo hidrológico HEC-HMS modulo continuo SMA, de acuerdo con la metodología que se desarrolla en los párrafos siguientes, donde se usa los caudales del balance hídrico para calibrar el modelo. Con el proceso de modelado en cuencas no instrumentadas no es posible validar con datos, únicamente se podría llamar un proceso de validación cualitativa. Ver Anexo F_carteras de campo_hidrología— HEC-HMS.

Para los drenajes de menor orden en el área de influencia en los cuales no se identifican estaciones de medición de caudal, se implementó el software HECHMS módulo SMA, el cual es un modelo lluvia-escorrentía que permite calcular el caudal a partir de datos de precipitación, para este caso se tuvieron en cuenta las estaciones y los cálculos presentados en el numeral 3.2.4.6.


3.2.4.10.1 Descripción del modelo hidrológico HECHMS

El modelo HEC-HMS (Hydrologic Engineering Center-Hydrologic Modeling System) es un modelo lluvia-escorrentía, desarrollado por el Hydrologic Engineering Center HEC del U.S. Army Corps of Engineers USACE, que está diseñado para simular el hidrograma de escorrentía que se produce en un determinado punto de la red fluvial como consecuencia de episodios de lluvia. El modelo SMA representa la cuenca mediante un conjunto de capas o depósitos, como se muestra esquemáticamente en la **Figura 3.2.4-60**, en la que se pueden ver también las conexiones o flujos de agua existentes entre los mismos.

Versión No. 0. 12.2021

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

Figura 3.2.4-60 Esquema modelo HEC HMS - SMA

Fuente: Tomado del Manual Hechms.

El primero de los depósitos de almacenamiento que se muestran en la figura representa la parte de la precipitación que es interceptada por la vegetación y no llega a alcanzar la superficie del terreno. El siguiente depósito representa el almacenamiento de agua en la superficie del terreno, en pequeñas depresiones. Pasando al interior del terreno, hay que señalar la existencia de un depósito que trata de representar el fenómeno complejo de almacenamiento de agua en la capa superior del suelo, que está dividido, a su vez, en dos zonas: la upper zone, que está constituida por la parte de suelo que es capaz de perder agua por evapotranspiración y/o percolación, y la tensión zone, que representa la parte del suelo que pierde agua exclusivamente por evapotranspiración.

En realidad, la subdivisión del depósito de almacenamiento del suelo en dos zonas trata de diferenciar la existencia de agua libre y de agua capilar en el interior de este.

Versión No. 0. 12.2021

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

Los dos depósitos subterráneos de almacenamiento de agua en el suelo, que se pueden reducir a uno solo, según las circunstancias, sirven para representar el flujo hipodérmico y el flujo base. La consideración, en cada caso, de uno o de los dos depósitos está condicionada por la forma de la curva de recesión del hidrograma correspondiente.

3.2.4.10.2 Modelo de la cuenca

Dependiendo la red de drenaje y del tamaño de la cuenca a simular se elabora la representación esquemática de la cuenca, como en el proyecto todas las cuencas no son contínuas a desembocar en un solo cauce, se ve la necesidad de crear un modelo hidrológico para cada subcuenca, cada modelo se adjunta en el Anexo F Carteras de Campo_hidrologia, información primaria de sustento / Hidrología /HEC-HMS. En la **Figura 3.2.4-64**, se muestra un ejemplo de configuración de una cuenca muy simple como lo es la cuenca Arroyo Las Piedras. En donde solo se tiene una cuenca (Subbasin), una corriente (Reach) y un reservorio (Reservoir) que capta los excedentes de escorrentía de la simulación hidrológica.

🙉 Basin Model [Cuenca Arroyo Las Piedras] ModelaP_Q_ADLP Basin Models 🔄 👰 Cuenca Arroyo Las Piedras ® 👶 Cuenca Arroyo Las Piedras └ 🔼 SalidaCuenca Cuenca Arroyo Las Piedras Meteorologic Models

ModeloNeterologico 🐠 Specified Hyetograph Control Specifications 🖀 Control Time-Series Data Precipitation Gages Components Compute Results Specified Evapotranspiration Het Name: ModeloMeterologico √ BalidaCuenca Cuenca Arroyo Las Piedra

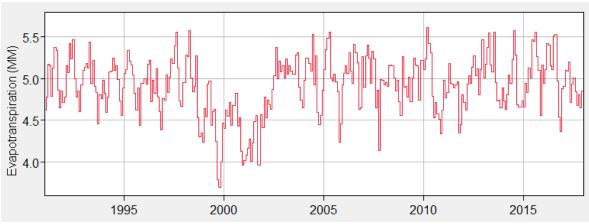
Figura 3.2.4-61 Esquema modelo HEC HMS cuenca Arroyo Las Piedras

Fuente: SGS Colombia, 2021.

Las demás cuencas utilizadas corresponden a las trazadas y analizadas en el **3.2.4.3** Cuencas presentes en el área de influencia fisicobiótica. Junto a su respectiva red hídrica.

3.2.4.10.3 Modelo Meteorológico de HECHMS

La precipitación constituye el input principal para la simulación hidrológica que realiza el modelo. Producto del análisis de información climatología se dispuso de información de precipitación diaria, de las estaciones más cercanas a las



Versión No. 0. 12.2021

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

subcuencas de interés, información que se regionalizó para toda el área con el fin de asignar a cada una de las subcuencas información pluviométrica, es decir, una serie de lluvia diaria desde 1991 a 2017 debido a que el modelo corrió de forma continua. Lo que implica que se considera la evapotranspiración potencial estimada en el apartado 3.2.4.9.2. En el módulo de Meteorología o meteorológico se selecciona la estación que contiene los datos "Serie diara ETP", ver Figura 3.2.4.61. Cabe recordar que la ETP no es relevante cuando se trata de analizar la respuesta hidrológica de la cuenca frente a aguaceros de corta duración. Sin embargo, se considera y analiza en este caso con el fin de establecer los excedentes de agua en el balance hídrico, ver 3.2.4-62, de ejemplo de la serie ETP ingresada en la cuenca Arroyo Las Flores.

Figura 3.2.4-62 Serie diaria ETP para modelación continua en HEC HMS zona de estudio.

Fuente: SGS Colombia, 2021.

La metodología de estimación de caudales corresponde a métodos sintéticos, la cual requeriría de datos observados para su calibración. Como en la zona de estudio no se presentan estaciones que contengan registros de caudales, se decide utilizar las estimaciones de la metodología de Balance Hídrico para hacer una evaluación cualitativa, de revisión de magnitudes y temporalidad de los resultados.

3.2.4.10.4 **Datos de entrada**

Los parámetros de entrada para realizar la corrida del modelo hidrológico, corresponden principalmente a la red de drenaje identificada y subcuencas delimitadas presentadas en los numerales 3.2.4.2 y 3.2.4.3 Además de los hietogramas unitarios calculados en al numeral 0 entre otros.

Versión No. 0. 12.2021

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

Como se indicó anteriormente el modelo está representado en diferentes depósitos (reservoirs) a través de los cuales el agua precipitada va pasando y recargando los acuíferos subterráneos (que pasado un tiempo aporta al flujo base) o aportando directamente por escorrentía al caudal superficial.

Tabla 3.2.4-27 Paquetes Usados

PROCESO	PAQUETE						
Cobertura (Canopy)	Simple Canopy						
Superficie (Surface)	Simple Surface						
Pérdidas (Loss Method)	Deficit and Constant						
Transformación Precipitación - Escorrentía (Transform)	SCS Unit Hydrograph						
Flujo Base (Baseflow Method)	Recession (Ay. Regolledo 1 y 2), None (Las demas cuencas)						

Fuente: SGS Colombia, 2021.

A continuación, en la **Tabla 3.2.4-28** se presentan los parámetros de entrada al modelo para cuenca y en la **Tabla 3.2.4-29** la descripción del proyecto.

Versión No. 0. 12.2021

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

Tabla 3.2.4-28 Parámetros de entrada para cuenca

		Q		CANO	OPY: SIMPLE CA	NOPY		SIM	SURFACE: SIMPLE SURFACE LOSS METHOD: DEFICIT AND CONSTAN			TRANSFO SCS Un Hydrogro	it		BASEFLO	OW: Rece	ssion			
CUENCA	ÁRE A (km²)	BALA NCE HÍDRI CO (m³/s)	Initial Storag e(%)	Max. Stora ge (mm	Evapotranspi ration	UPTA KE METH OD	Crop Coefici ent	Initial Stora ge (%)	Max. Stora ge (mm	Initi al Defi cit (m m)	Ma x. Defi cit (m m)	Const ant Rate (mm/ h)	Impervi ous (%)	Tiempo de concentr ación (min)	Lag Tim e (mi n) - 0.6 Tc	Initial Type	Initial Discha rge (m³/s)	Reces sion Const ant	Thresh old Type	Flo w (m³ /s)
Afluente NN al Embalse El Guájaro	17,09 1	0,120	0	2	Wet and Dry Periods	Simpl e	1	1	5	8	13	0,317	0	72,6	43,5 6	NA	NA	NA	NA	NA
Afluente NN1 al Embalse El Guájaro	3,927	0,048	0	2	Wet and Dry Periods	Simpl e	1	1	5	8	13	0,317	0	66,6	39,9 6	NA	NA	NA	NA	NA
Afluente NN2 al Embalse El Guájaro	7,801	0,096	0	2	Wet and Dry Periods	Simpl e	1	1	5	8	13	0,317	0	68,4	41,0 4	NA	NA	NA	NA	NA
Afluente NN3 al Embalse El Guájaro	2,244	0,019	0	2	Wet and Dry Periods	Simpl e	1	1	5	8	13	0,317	0	52,8	31,6 8	NA	NA	NA	NA	NA
Arroyo Barro (Arroyo Mono)	7,121	0,042	0	2	Wet and Dry Periods	Simpl e	1	1	5	8	13	0,317	0	127,2	76,3 2	NA	NA	NA	NA	NA
Arroyo Bejuco	8,648	0,049	0	2	Wet and Dry Periods	Simpl e	1	1	5	8	13	0,317	0	145,2	87,1 2	NA	NA	NA	NA	NA
Arroyo de Las Piedras	8,326	0,049	0	2	Wet and Dry Periods	Simpl e	1	1	5	8	13	0,317	0	97,2	58,3 2	NA	NA	NA	NA	NA
Arroyo El Salado	14,12 2	0,095	0	2	Wet and Dry Periods	Simpl e	1	1	5	8	13	0,317	0	43,8	26,2 8	NA	NA	NA	NA	NA
Arroyo Gallego	36,78 4	0,281	0	2	Wet and Dry Periods	Simpl e	1	1	5	8	13	0,317	0	261,6	156, 96	NA	NA	NA	NA	NA

Versión No. 0. 12.2021

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

		Q		CANO	OPY: SIMPLE CA	NOPY		SURF SIM SURF	PLE	LOSS		OD: DEFI ONSTAN	CIT AND	TRANSFO SCS Un Hydrogro	it		BASEFLO	OW: Rece	ssion	
CUENCA	ÁRE A (km²)	BALA NCE HÍDRI CO (m³/s)	Initial Storag e(%)	Max. Stora ge (mm	Evapotranspi ration	UPTA KE METH OD	Crop Coefici ent	Initial Stora ge (%)	Max. Stora ge (mm	Initi al Defi cit (m m)	Ma x. Defi cit (m m)	Const ant Rate (mm/ h)	Impervi ous (%)	Tiempo de concentr ación (min)	Lag Tim e (mi n) - 0.6 Tc	Initial Type	Initial Discha rge (m³/s)	Reces sion Const ant	Thresh old Type	Flo w (m³ /s)
Arroyo Grande	185,2 82	1,192	0	2	Wet and Dry Periods	Simpl e	1	1	5	8	13	0,317	0	725,4	435, 24	NA	NA	NA	NA	NA
Arroyo Guanáb ano	22,33 7	0,108	0	2	Wet and Dry Periods	Simpl e	1	1	5	8	13	0,317	0	284,4	170, 64	NA	NA	NA	NA	NA
Arroyo Guayep o	112,7 85	0,762	0	2	Wet and Dry Periods	Simpl e	1	1	5	8	13	0,317	0	340,2	204, 12	NA	NA	NA	NA	NA
Arroyo La Peña	8,659	0,107	0	2	Wet and Dry Periods	Simpl e	1	1	5	8	13	0,317	0	61,8	37,0 8	NA	NA	NA	NA	NA
Arroyo Leña	16,00 9	0,092	0	2	Wet and Dry Periods	Simpl e	1	1	5	8	13	0,317	0	217,8	130, 68	NA	NA	NA	NA	NA
Arroyo Malavet	10,65 1	0,075	0	2	Wet and Dry Periods	Simpl e	1	1	5	8	13	0,317	0	75,6	45,3 6	NA	NA	NA	NA	NA
Arroyo Manga	45,60 2	0,313	0	2	Wet and Dry Periods	Simpl e	1	1	5	8	13	0,317	0	274,8	164, 88	NA	NA	NA	NA	NA
Arroyo Mendoz a	6,671	0,082	0	2	Wet and Dry Periods	Simpl e	1	1	5	8	13	0,317	0	88,8	53,2 8	NA	NA	NA	NA	NA
Arroyo Molinero	291,2 95	2,082	0	2	Wet and Dry Periods	Simpl e	1	1	5	8	13	0,317	0	232,8	139, 68	NA	NA	NA	NA	NA
Arroyo NN	6,572	0,035	0	2	Wet and Dry Periods	Simpl e	1	1	5	8	13	0,317	0	117,6	70,5 6	NA	NA	NA	NA	NA
Arroyo NN1	28,13 4	0,223	0	2	Wet and Dry Periods	Simpl e	1	1	5	8	13	0,317	0	125,4	75,2 4	NA	NA	NA	NA	NA
Arroyo NN3	5,227	0,034	0	2	Wet and Dry Periods	Simpl e	1	1	5	8	13	0,317	0	87	52,2	NA	NA	NA	NA	NA
Arroyo NN4	5,486	0,032	0	2	Wet and Dry Periods	Simpl e	1	1	5	8	13	0,317	0	72,6	43,5 6	NA	NA	NA	NA	NA
Arroyo NN5	1,749	0,009	0	2	Wet and Dry Periods	Simpl e	1	1	5	8	13	0,317	0	43,2	25,9 2	NA	NA	NA	NA	NA
Arroyo Orijata	26,24 0	0,140	0	2	Wet and Dry Periods	Simpl e	1	1	5	8	13	0,317	0	132,6	79,5 6	NA	NA	NA	NA	NA
Arroyo Pantano	21,15	0,184	0	2	Wet and Dry Periods	Simpl e	1	1	5	8	13	0,317	0	236,4	141, 84	NA	NA	NA	NA	NA

Versión No. 0. 12.2021

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

		Q		CANO	OPY: SIMPLE CA	NOPY		SURF SIM SURF	PLE	LOSS		OD: DEFI	CIT AND	TRANSFO SCS Un Hydrogro	it		BASEFLO	OW: Rece	ession	
CUENCA	ÁRE A (km²)	BALA NCE HÍDRI CO (m³/s)	Initial Storag e(%)	Max. Stora ge (mm	Evapotranspi ration	UPTA KE METH OD	Crop Coefici ent	Initial Stora ge (%)	Max. Stora ge (mm	Initi al Defi cit (m m)	Ma x. Defi cit (m m)	Const ant Rate (mm/ h)	Impervi ous (%)	Tiempo de concentr ación (min)	Lag Tim e (mi n) - 0.6 Tc	Initial Type	Initial Discha rge (m³/s)	Reces sion Const ant	Thresh old Type	Flo w (m³ /s)
Arroyo Platanal	144,7 29	0,883	0	2	Wet and Dry Periods	Simpl e	1	1	5	8	13	0,317	0	221,4	132, 84	NA	NA	NA	NA	NA
Arroyo Regolle do 1	0,323	0,004	0	2	Wet and Dry Periods	Simpl e	1	1	5	8	13	0,317	0	16,2	9,72	Discha rge	0,0003	0,997	Thresh old Discha rge	0,00 01
Arroyo Regolle do 2	0,979	0,012	0	2	Wet and Dry Periods	Simpl e	1	3	8	8	13	0,526	0	9,6	5,76	Discha rge	0,0005	0,997	Thresh old Discha rge	0,00
Arroyo Rico	2,931	0,036	0	2	Wet and Dry Periods	Simpl e	1	1	5	8	13	0,317	0	48,6	29,1 6	NA	NA	NA	NA	NA
Arroyo Salado	56,77 6	0,641	0	2	Wet and Dry Periods	Simpl e	1	1	5	8	13	0,317	0	310,8	186, 48	NA	NA	NA	NA	NA
Directos al embalse El guájaro	75,90 3	0,719	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Directos al Río Magdal ena	162,2 02	0,877	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Espejo de agua Embalse El Guájaro	113,0 35	0,981	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Fuente: SGS Colombia, 2021.

Versión No. 0. 12.2021

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

Tabla 3.2.4-29 Descripción del proyecto para cada cuenca

CUENCA	NOMBRE PROYECTO HEC-HMS	DESCRIPCIÓN	FECHA INICIAL	FECHA FINAL	DISCRETIZACIÓN TEMPORAL SIMULACIÓN
Afluente NN al Embalse El Guájaro	ModeloP_Q_ANNEE G	Modelo a escala diaria para caracterización	01ene. 1991	31dic.2 017	1 hora
Afluente NN1 al Embalse El Guájaro	ModeloP_Q_ANN1E EG	Modelo a escala diaria para caracterización	01ene. 1991	31dic.2 017	1 hora
Afluente NN2 al Embalse El Guájaro	ModeloP_Q_ANN2E EG	Modelo a escala diaria para caracterización	01ene. 1991	31dic.2 017	1 hora
Afluente NN3 al Embalse El Guájaro	ModeloP_Q_ANN3E EG	Modelo a escala diaria para caracterización	01ene. 1991	31dic.2 017	1 hora
Arroyo Barro (Arroyo Mono)	ModeloP_Q_AB_AM	Modelo a escala diaria para caracterización	01ene. 1991	31dic.2 017	1 hora
Arroyo Bejuco	ModeloP_Q_Abejuc o	Modelo a escala diaria para caracterización	01ene. 1991	31dic.2 017	1 hora
Arroyo de Las Piedras	ModeloP_Q_ADLP	Modelo a escala diaria para caracterización	01ene. 1991	31dic.2 017	1 hora
Arroyo El Salado	ModeloP_Q_AESala do	Modelo a escala diaria para caracterización	01ene. 1991	31dic.2 017	1 hora
Arroyo Gallego	ModeloP_Q_Agalle go	Modelo a escala diaria para caracterización	01ene. 1991	31dic.2 017	1 hora
Arroyo Grande	AyGrande_210729	Modelo a escala diaria para caracterización	01ene. 1991	31dic.2 017	1 hora
Arroyo Guanábano	ModeoP_Q_Aguan abano	Modelo a escala diaria para caracterización	01ene. 1991	31dic.2 017	1 hora
Arroyo Guayepo	ModeloP_Q_Aguay epo	Modelo a escala diaria para caracterización	01ene. 1991	31dic.2 017	1 hora
Arroyo La Peña	ModeloP_Q_ALPen a	Modelo a escala diaria para caracterización	01ene. 1991	31dic.2 017	1 hora
Arroyo Leña	ModeloP_QALena	Modelo a escala diaria para caracterización	01ene. 1991	31dic.2 017	1 hora
Arroyo Malavet	ModeloLluvia_Escorr entia_Malavet	Modelo a escala diaria para caracterización	01ene. 1991	31dic.2 017	1 hora

Versión No. 0. 12.2021

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

CUENCA	NOMBRE PROYECTO HEC-HMS	DESCRIPCIÓN	FECHA INICIAL	FECHA FINAL	DISCRETIZACIÓN TEMPORAL SIMULACIÓN
Arroyo Manga	ModeloP_Q_AMang a	Modelo a escala diaria para caracterización	01ene. 1991	31dic.2 017	1 hora
Arroyo Mendoza	ModeloP_Q_Amend oza	I gigrig barg I I		31dic.2 017	1 hora
Arroyo Molinero	ModeloP_Q_Amolin ero	Modelo a escala diaria para caracterización	01ene. 1991	31dic.2 017	1 hora
Arroyo NN	ModeloP_Q_ANN	Modelo a escala diaria para caracterización	01ene. 1991	31dic.2 017	1 hora
Arroyo NN1	ModeloP_Q_ANN1	Modelo a escala diaria para caracterización	01ene. 1991	31dic.2 017	1 hora
Arroyo NN2	ModeloP_Q_ANN2	Modelo a escala diaria para caracterización	01ene. 1991	31dic.2 017	1 hora
Arroyo NN3	ModeloP_Q_ANN3	Modelo a escala diaria para caracterización	01ene. 1991	31dic.2 017	1 hora
Arroyo NN4	ModeloP_Q_ANN4	Modelo a escala diaria para caracterización	01ene. 1991	31dic.2 017	1 hora
Arroyo NN5	ModeloP_Q_ANN5	Modelo a escala diaria para caracterización	01ene. 1991	31dic.2 017	1 hora
Arroyo NN6	ModeloP_Q_ANN6	Modelo a escala diaria para caracterización	01ene. 1991	31dic.2 017	1 hora
Arroyo Orijata	ModeloP_Q_Aorijat a	Modelo a escala diaria para caracterización	01ene. 1991	31dic.2 017	1 hora
Arroyo Pantano	ModeloP_Q_Apant ano	Modelo a escala diaria para caracterización	01ene. 1991	31dic.2 017	1 hora
Arroyo Platanal	ModeloP_Q_Aplata nal	Modelo a escala diaria para caracterización	01ene. 1991	31dic.2 017	1 hora
Arroyo Regolledo 1	ModeloP_Q_Aregoll edo1	Modelo a escala diaria para caracterización	01ene. 1991	31dic.2 017	1 hora
Arroyo Regolledo 2	ModeloP_Q_Aregoll edo2	Modelo a escala diaria para caracterización	01ene. 1991	31dic.2 017	1 hora
Arroyo Rico	ModeloP_Q_Arico	Modelo a escala diaria para caracterización	01ene. 1991	31dic.2 017	1 hora

Versión No. 0. 12.2021

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

CUENCA	NOMBRE PROYECTO HEC-HMS	DESCRIPCIÓN	FECHA INICIAL	FECHA FINAL	DISCRETIZACIÓN TEMPORAL SIMULACIÓN
Arroyo Salado	ModeloP_Q_Asalad o	Modelo a escala diaria para caracterización	01ene. 1991	31dic.2 017	1 hora
Directos al embalse El guájaro	No se realizó modelo por ser afluentes directos.	No aplica	No aplica	No aplica	No aplica
Directos al Río Magdalena	No se realizó modelo por ser afluentes directos.	No aplica	No aplica	No aplica	No aplica
Espejo de agua Embalse El Guájaro	No se realizó por ser el espejo de agua del embalse	No aplica	No aplica	No aplica	No aplica

Fuente: SGS Colombia, 2021.

3.2.4.10.5 Resultados obtenidos

Después de realizar el procesamiento de la información en HECHMS se obtuvieron unos resultados iniciales a continuación se presentan los resultados para la subcuenca Afluente NN al Embalse el Guájaro, sin embargo, los resultados de las demás subcuencas se encuentran en el AnexoF_carteras de campo_hidrologia_-HEC-HMS.

Tabla 3.2.4-30 Resultados iniciales arrojados por el modelo Subcuenca Afluente NN al Embalse el Guájaro.

PARÁMETRO	VALOR
Qmedio simulado (m³/s)	0,172
Qmedio balance hídrico (m³/s)	0,12
Error (%)	43,51
Q peak (m³/s)	22,7

Fuente: SGS Colombia, 2021.

Tabla 3.2.4-31 Resultados calibrados para la Subcuenca Afluente NN al Embalse el Guájaro.

PARÁMETRO	VALOR
Qmedio simulado (m³/s)	0,120
Qmedio balance hídrico (m³/s)	0,12
Error (%)	0,40
Q peak (m³/s)	21,3

Versión No. 0. 12.2021

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

Según lo observado en las tablas **Tabla 3.2.4-30** y **Tabla 3.2.4-31** se encuentra como los resultados iniciales obtenidos por el modelo hidrológico tienen un error del 43,51%, este valor es muy alto por lo que, al hacer la calibración del modelo con los datos obtenido del balance hídrico, se logran resultados con un error mucho más bajo del 0,40%.

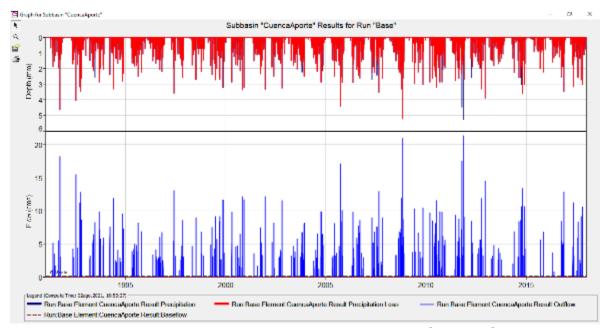


Figura 3.2.4-63 Hidrograma generado de la modelación hidrológica de la Subcuenca Afluente NN al Embalse el Guájaro

Fuente: SGS Colombia, 2021

En la **Tabla 3.2.4-32** se presentan los caudales medios simulados y calibrados para las subcuencas en el área de influencia.

Versión No. 0. 12.2021

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

Tabla 3.2.4-32 Caudales medios simulados y calibrados para las subcuencas en el área de influencia

CUENCA	ÁREA	CAUDAL MEDIO MENSUAL (m³/s)												
COLINCA	(km²)	ENERO	FEBRERO	MARZO	ABRIL	MAYO	JUNIO	JULIO	AGOSTO	SEPTIEMBRE	OCTUBRE	NOVIEMBRE	DICIEMBRE	ANUAL
Afluente NN al Embalse El Guájaro	17,09	0,0000	0,0000	0,0155	0,0697	0,1086	0,1110	0,1034	0,1166	0,2210	0,3811	0,2368	0,0650	0,1191
Afluente NN1 al Embalse El Guájaro	3,93	0,0011	0,0025	0,0110	0,0320	0,0605	0,0527	0,0796	0,0862	0,0921	0,0869	0,0603	0,0127	0,0481
Afluente NN2 al Embalse El Guájaro	7,80	0,0022	0,0050	0,0218	0,0634	0,1202	0,1048	0,1581	0,1710	0,1825	0,1736	0,1191	0,0252	0,0956
Afluente NN3 al Embalse El Guájaro	2,24	0,0002	0,0010	0,0035	0,0105	0,0264	0,0199	0,0276	0,0345	0,0359	0,0338	0,0245	0,0048	0,0185
Arroyo Barro (Arroyo Mono)	7,12	0,000	0,0038	0,0111	0,0447	0,0722	0,0396	0,0391	0,0635	0,0765	0,0902	0,0595	0,0067	0,0422
Arroyo Bejuco	8,65	0,0000	0,0039	0,0130	0,0506	0,0823	0,0476	0,0483	0,0696	0,0927	0,1030	0,0665	0,0069	0,0487
Arroyo de Las Piedras	8,33	0,0000	0,0043	0,0127	0,0508	0,0827	0,0459	0,0461	0,0712	0,0879	0,1027	0,0672	0,0073	0,0482
Arroyo El Salado	14,12	0,0000	0,0000	0,0189	0,0435	0,0676	0,1024	0,1440	0,0775	0,1644	0,2926	0,1994	0,0285	0,0949
Arroyo Gallego	36,78	0,0000	0,0084	0,0560	0,1928	0,3942	0,2732	0,4040	0,4348	0,5207	0,6021	0,4120	0,0645	0,2802
Arroyo Grande	185,28	0,0288	0,0599	0,1183	0,7262	2,1185	1,3206	1,6797	2,6031	1,9592	1,7004	1,6539	0,3030	1,1893
Arroyo Guanába no	22,34	0,0000	0,000	0,0472	0,0629	0,1880	0,1081	0,1226	0,1305	0,1558	0,2257	0,2250	0,0271	0,1077
Arroyo Guayepo	112,79	0,0000	0,0000	0,0970	0,3050	1,2129	0,6847	1,0674	1,3243	1,2792	1,6422	1,2898	0,1530	0,7546

Versión No. 0. 12.2021

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

CUENCA	ÁREA					C	CAUDAL ME	DIO MENSI	JAL (m³/s)					
CUENCA	(km²)	ENERO	FEBRERO	MARZO	ABRIL	MAYO	JUNIO	JULIO	AGOSTO	SEPTIEMBRE	OCTUBRE	NOVIEMBRE	DICIEMBRE	ANUAL
Arroyo La Peña	8,66	0,0024	0,0055	0,0242	0,0705	0,1335	0,1164	0,1756	0,1895	0,2021	0,1926	0,1319	0,0279	0,1060
Arroyo Leña	16,01	0,0000	0,0063	0,0248	0,0925	0,1496	0,0917	0,0947	0,1303	0,1742	0,1951	0,1241	0,0151	0,0915
Arroyo Malavet	10,65	0,0009	0,0064	0,0176	0,0467	0,1165	0,0823	0,1034	0,1350	0,1343	0,1347	0,1007	0,0186	0,0748
Arroyo Manga	45,60	0,0131	0,0263	0,0424	0,2315	0,5669	0,3437	0,4277	0,7298	0,5034	0,4141	0,3699	0,0660	0,3112
Arroyo Mendoza	6,67	0,0018	0,0043	0,0187	0,0541	0,1030	0,0893	0,1352	0,1461	0,1563	0,1485	0,1019	0,0215	0,0817
Arroyo Molinero	291,30	0,0000	0,0000	0,1736	1,1034	2,9690	2,0716	3,3897	3,5013	3,5196	3,7282	3,8002	0,5999	2,0714
Arroyo NN	6,57	0,0000	0,0000	0,0171	0,0184	0,0629	0,0360	0,0420	0,0414	0,0464	0,0719	0,0672	0,0086	0,0343
Arroyo NN1	28,13	0,0000	0,0080	0,0598	0,1814	0,3680	0,2223	0,2394	0,3002	0,3758	0,4917	0,3735	0,0475	0,2223
Arroyo NN2	0,37	0,0000	0,0002	0,0002	0,0019	0,0035	0,0014	0,0018	0,0032	0,0028	0,0032	0,0024	0,0001	0,0017
Arroyo NN3	5,23	0,0000	0,0022	0,0050	0,0315	0,0690	0,0331	0,0350	0,0574	0,0495	0,0668	0,0451	0,0055	0,0333
Arroyo NN4	5,49	0,0002	0,0046	0,0100	0,0243	0,0576	0,0370	0,0362	0,0571	0,0530	0,0532	0,0432	0,0066	0,0319
Arroyo NN5	1,75	0,0000	0,0018	0,0031	0,0071	0,0172	0,0103	0,0082	0,0158	0,0130	0,0136	0,0111	0,0014	0,0085
Arroyo NN6	1,66	0,0000	0,0017	0,0029	0,0068	0,0163	0,0098	0,0078	0,0150	0,0124	0,0129	0,0106	0,0014	0,0081
Arroyo Orijata	26,24	0,0000	0,0056	0,0406	0,1142	0,2319	0,1423	0,1463	0,1884	0,2310	0,3172	0,2300	0,0229	0,1392
Arroyo Pantano	21,15	0,0012	0,0054	0,0359	0,1009	0,2488	0,1858	0,2789	0,3279	0,3592	0,3586	0,2507	0,0468	0,1833
Arroyo Platanal	144,73	0,0108	0,0069	0,0379	0,6142	1,4925	0,9622	1,4746	1,6691	1,4533	1,1525	1,4389	0,2318	0,8787
Arroyo Regolledo 1	0,32	0,0002	0,0003	0,0009	0,0026	0,0050	0,0042	0,0066	0,0070	0,0076	0,0072	0,0050	0,0011	0,0040
Arroyo Regolledo 2	0,98	0,0005	0,0007	0,0027	0,0076	0,0149	0,0127	0,0199	0,0212	0,0229	0,0219	0,0150	0,0032	0,0119

Versión No. 0. 12.2021

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

OUTNOA	ÁREA	CAUDAL MEDIO MENSUAL (m³/s)												
CUENCA	(km²)	ENERO	FEBRERO	MARZO	ABRIL	MAYO	JUNIO	JULIO	AGOSTO	SEPTIEMBRE	OCTUBRE	NOVIEMBRE	DICIEMBRE	ANUAL
Arroyo Rico	2,93	0,0008	0,0019	0,0082	0,0238	0,0452	0,0394	0,0595	0,0643	0,0686	0,0652	0,0448	0,0095	0,0359
Arroyo Salado	56,78	0,0118	0,0259	0,1328	0,3834	0,8246	0,6778	1,0446	1,1412	1,2336	1,1955	0,8286	0,1647	0,6387
Directos al embalse El guájaro	75,90	No Aplica	No Aplica	No Aplica	No Aplica	No Aplica	No Aplica	No Aplica	No Aplica	No Aplica	No Aplica	No Aplica	No Aplica	0,7185 7
Directos al Río Magdalen a	162,20	No Aplica	No Aplica	No Aplica	No Aplica	No Aplica	No Aplica	No Aplica	No Aplica	No Aplica	No Aplica	No Aplica	No Aplica	0,8770 5
Espejo de agua Embalse El Guájaro	113,04	No Aplica	No Aplica	No Aplica	No Aplica	No Aplica	No Aplica	No Aplica	No Aplica	No Aplica	No Aplica	No Aplica	No Aplica	0,9814 7

Fuente: SGS Colombia, 2021

Versión No. 0. 12.2021

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

3.2.4.10.6 Régimen de caudales del río Magdalena a la altura del proyecto

La caracterización del río Magdalena se realizó con la información procesada de la estación Calamar como se observa en la Figura 3.2.4-64, los cálculos de la figura se adjuntan en el AnexoF_carteras de campo_ Hidrología / Análisis Estadístico y Tratamiento de Datos/ Caudal Régimen Calamar.xlsx. . Así las cosas, se presenta el régimen de caudales del río Magdalena en inmediaciones del área de influencia del proyecto (El régimen de caudal en el río Magdalena es monomodal sostenido entre mayo y diciembre, con un caudal medio mínimo 4021 m³/s (marzo) y 9003 m³/s (diciembre), medio mínimo entre 2310 m³/s (febrero) y 5276 m³/s (noviembre), y medio máximo entre 6817 m³/s (febrero) y 13546 m³/s (diciembre.)

RÉGIMEN CAUDAL RÍO MAGDALENA EN EL ÁREA DE INFLUENCIA (1991 - 2020)

16000.00
14000.00
12000.00
8000.00
4000.00
2000.00
0.00

PROMEDIO (m3/s)

MÁXIMO (m3/s)

MÍNIMO (m3/s)

Figura 3.2.4-64 Régimen de caudales del río Magdalena estación Calamar

Fuente: SGS Colombia, 2021

3.2.4.11 Curva de duración de caudales

La curva de duración de caudales también es conocida como curva de persistencia o curva de caudales clasificados nos indica el porcentaje del tiempo durante el cual los caudales han sido igualados o excedidos. Además, la curva

Versión No. 0. 12.2021

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

indica el valor del caudal en función de la frecuencia de su ocurrencia. Se puede construir a partir de caudales diarios, mensuales, anuales, etc.

Primero se deben ordenar los datos de mayor a menor valor, posteriormente en otra columna se identifica la cantidad de veces que cada dato aparece construyendo la denominada Frecuencia Relativa. Luego en otra columna y siguiendo el orden de mayor valor al de menor valor de caudal anual, se empieza a acumular la Frecuencia Relativa. Se suma la posición i de la frecuencia relativa y todos sus valores antecedentes para construir la columna Frecuencia Absoluta. En el siguiente paso se estima la Probabilidad de Excedencia mediante la ecuación:

$$Probabilidad_{Excedencia} = \left(\frac{Frecuencia\ Relativa}{M\'{a}x\ dato\ Frencuenia\ Absoluta+1}\right)*100$$

Finalmente, se grafica probabilidad de excedencia frente al valor del caudal máximo anual. El caudal en las ordenadas y las probabilidades en las abscisas.

Tabla 3.2.4-33 Ejemplo cálculos Curva Duración de Caudal

ORDEN	ORGANIZADO CAUDAL (m³/s)	FRECUENCIA RELATIVA	FRECUENCIA ABSOLUTA	PROBABILIDAD EXCEDENCIA (%)
1	189.5	1	1	0.000
2	189.4	1	2	0.001
3	188.6	1	3	0.001
4	187.4	1	4	0.002
5	187.3	1	5	0.002
6	186.0	1	6	0.003
7	184.2	1	7	0.003
8	182.5	3	10	0.003
9	182.1	1	11	0.004
10	179.4	1	12	0.004
•	:	•	:	:
n-2	0.2	20	32	95
n-1	0.1	50	82	98
n	0	1000	1082	100

Fuente: SGS Colombia, 2021

Se muestra como ejemplo la cuenca Afluente NN al Embalse el Guájaro, las demás subcuencas se encuentran en el Anexo F_carteras de campo_hidrologia – Curvas de Duración de Caudales.

Versión No. 0. 12.2021

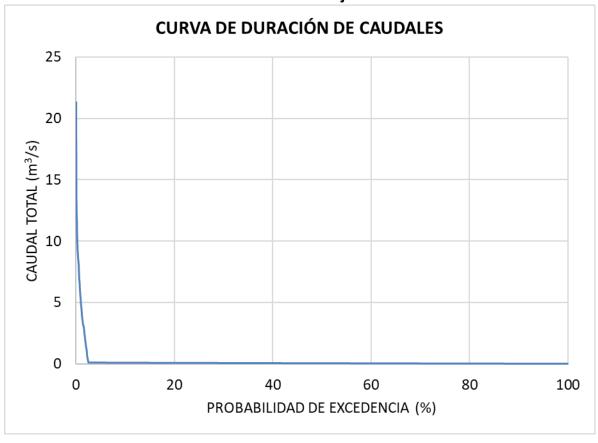
CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

Tabla 3.2.4-34 Caudales característicos en la subcuenca Afluente NN al Embalse el Guájaro

Q CARACTERÍSTICO	VALOR (m³/s)
Q 5	0,000
Q 10	0,000
Q 25	0,000
Q50	0,000
Q75	0,000
Q85	0,000
Q90	0,000
Q95	0,000

Fuente: SGS Colombia, 2021

Como se observa en la **Tabla 3.2.4-34** y en la **Figura 3.2.4-65**, el afluente NN es un cuerpo de agua de tipo intermitente o perene, que la mayoría del tiempo se encuentra seco o sin agua, esto es una condición normal en la zona, y pueden observarse las demás gráficas correspondientes a las subcuencas en el área de influencia en el Anexo F_carteras de campo_hidrologia— Curvas de Duración de Caudales.



Versión No. 0. 12.2021

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

Figura 3.2.4-65 Curva de Duración de caudales Subcuenca Afluente NN al Embalse el Guájaro

Fuente: SGS Colombia, 2021

3.2.4.12 Caudales extremos de las corrientes en el área de influencia fisicobiótica

El análisis y estimación de los caudales extremos consiste en tomar el valor máximo en cada año que se obtuvo de la simulación de HEC-HMS. Fueron 27 datos correspondientes al periodo entre 1991-2017. Estos datos son ordenados de mayor a menor como se ve en la tabla 3.2.4-34. Con los 27 datos se obtienen unos parámetros estadísticos como promedio, desviación estándar, Alpha, µ y Dmax de Gumbel, entre otros para después aplicar un análisis de frecuencia y permitir identificar a cuál distribución de probabilidad se ajustan mejor esos 27 datos que permita utilizar extrapolar los posibles valores que tendría el caudal para un periodo de retorno Tr dado. Entendido TR como el número promedio de años dentro del cual se espera que el evento sea igualado o excedido sólo una vez. Los años a determinar son 2.33, 5, 10, 25, 50 y 100 Chow et al (Chow, Maidment, & Mays, 1988).

Versión No. 0. 12.2021

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

Se presenta a continuación los caudales máximos analizados para la subcuenca de Afluente NN al Embalse el Guájaro, evidenciando los caudales extremos para distintos periodos de retorno, en el Anexo F_carteras de campo— Inferencia Estadística, se encuentran los cálculos para estimar los caudales extremos para las demás subcuencas dentro del área de influencia y en el Anexo F_carteras de campo_Hidrologia— Régimen y Extremos Unidades Hidrográficas se presenta el compilado de los resultados obtenidos.

Tabla 3.2.4-35. Pruebas de bondad y ajuste Subcuenca Afluente NN al Embalse el Guájaro

000,000								
X - Ordenado	Ln X	m	Fo (Xm)	F(x) - Gumbel	(Fo-F) - Gumbel	F (x) - Normal	(Fo-F) - Normal	
21,3	3,058707073	1	0,96	0,971185609	-0,006899894	0,989390917	-0,0251	
21	3,044522438	2	0,93	0,968342639	-0,039771211	0,987112217	-0,0585	
18,2	2,901421594	3	0,89	0,924520108	-0,031662965	0,937511442	-0,0447	
17,1	2,839078464	4	0,86	0,894572136	-0,037429279	0,89635193	-0,0392	
15,4	2,734367509	5	0,82	0,825751282	-0,00432271	0,799223422	0,0222	
14,5	2,674148649	6	0,79	0,774899472	0,010814814	0,730835247	0,0549	
13,3	2,587764035	7	0,75	0,688154397	0,061845603	0,624502766	0,1255	
13,1	2,57261223	8	0,71	0,671443694	0,04284202	0,605519311	0,1088	
12,9	2,557227311	9	0,68	0,654080304	0,024491125	0,586281852	0,0923	
12,8	2,549445171	10	0,64	0,645155123	-0,00229798	0,576581753	0,0663	
12,1	2,493205453	11	0,61	0,578261118	0,028881739	0,507705346	0,0994	
12,1	2,493205453	12	0,57	0,578261118	-0,006832547	0,507705346	0,0637	
11,9	2,4765384	13	0,54	0,557798807	-0,022084521	0,487892706	0,0478	
11,6	2,451005098	14	0,50	0,526086703	-0,026086703	0,458244908	0,0418	
11,5	2,442347035	15	0,46	0,515263781	-0,050978067	0,448405564	0,0159	
11,5	2,442347035	16	0,43	0,515263781	-0,086692353	0,448405564	-0,0198	
11,2	2,415913778	17	0,39	0,482120193	-0,089263051	0,419100991	-0,0262	
10,4	2,341805806	18	0,36	0,390122922	-0,032980065	0,343522286	0,0136	
9,9	2,292534757	19	0,32	0,331609463	-0,010180892	0,299082559	0,0223	
9,8	2,282382386	20	0,29	0,319972365	-0,034258079	0,290516865	-0,0048	
9,8	2,282382386	21	0,25	0,319972365	-0,069972365	0,290516865	-0,0405	
8,9	2,186051277	22	0,21	0,21919096	-0,004905245	0,219056121	-0,0048	
8,1	2,091864062	23	0,18	0,141097028	0,0374744	0,165013358	0,0136	
8,1	2,091864062	24	0,14	0,141097028	0,001760115	0,165013358	-0,0222	
6,7	1,902107526	25	0,11	0,046947335	0,060195522	0,093127112	0,0140	
6,7	1,902107526	26	0,07	0,046947335	0,024481236	0,093127112	-0,0217	
4,7	1,547562509	27	0,04	0,003077616	0,03263667	0,034499263	0,0012	

Fuente: SGS Colombia, 2021

Tabla 3.2.4-36. Caudales extremos Subcuenca Afluente NN al Embalse el Guájaro

GUMBEL - MÁXIMOS INFERENCIA							
Periodo de Retorno Kt Q tr							
2,33	0,001	12,03					

Versión No. 0. 12.2021

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

GUMBEL - MÁXIMOS INFERENCIA								
Periodo de Retorno	Kt	Q tr						
5	0,719	14,92						
10	1,305	17,28						
25	2,044	20,25						
50	2,592	22,46						
100	3,137	24,65						

Fuente: SGS Colombia, 2021

3.2.4.13 Análisis multitemporal de la dinámica fluvial

Inicialmente para el desarrollo del análisis multitemporal, se procede a hacer uso de Google Earth en distintos años, para el cuerpo de agua más representativo del lugar que es el Embalse el Guájaro, para dicho análisis se toman años representativos en la variabilidad climática como lo son los fenómenos del niño y la niña, debido a que estos influyen en la dinámica fluvial de los cuerpos de agua, al representar cómo crecen en temporadas lluvias y cuanto llegan a secarse en temporadas secas.

En la **Figura 3.2.4-66** se presenta el fenómeno de la niña ocurrido entre los años 2010 y 2011, sin embargo la imagen corresponde al 30 de diciembre de 2010, allí se observa con claridad la forma natural del cuerpo de agua, el embalse, tiene protección en sus rondas, por lo que en evidencia no se observa inundación o desplayamientos del cuerpo de agua, pero si se observa su forma completa, en comparación con la **Figura 3.2.4-67** que corresponde al fenómeno del Niño ocurrido entre los años 2014 y 2016, la imagen corresponde al 30 de diciembre del 2016 y se evidencia claramente hacia el sur del Embalse como la lámina de agua disminuye notoriamente, es así como evidenciamos que la zona es ampliamente susceptible a los cambios de temporalidades, es decir, la dinámica fluvial del lugar hace que cuando llueva se formen diversos cuerpos de agua que cuando no hay precipitaciones se sequen y no se evidencien claramente, por esto mismo son cuerpos de agua intermitentes que en general no presentan cobertura de bosques de galería alrededor de los cuerpos de agua.

Versión No. 0. 12.2021

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

Figura 3.2.4-66 Imagen Satelital Embalse el Guájaro Fenómeno Niña (2010-2011)

Fuente: SGS Colombia, 2021

Figura 3.2.4-67 Imagen Satelital Embalse el Guájaro Fenómeno Niño (2014-2016)

Fuente: SGS Colombia, 2021

De igual manera se presenta para el Río Magdalena donde se plantean 3 captaciones de agua superficial, como se observa en la temporalidad Niña, el cuerpo de agua presenta un ensanchamiento hacia la zona norte y sur de la imagen, de igual manera hacia Puerto Giraldo, se observa como los brazos pequeños del Río Magdalena se unen y forman un gran brazo. Caso contrario

Versión No. 0. 12.2021

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

ocurre en la temporalidad seca, donde el cauce principal presenta solo una bifurcación hacia un brazo de menor caudal.

Figura 3.2.4-68 Imagen Satelital Río Magdalena Fenómeno Niña (2010-2011)

Fuente: SGS Colombia, 2021

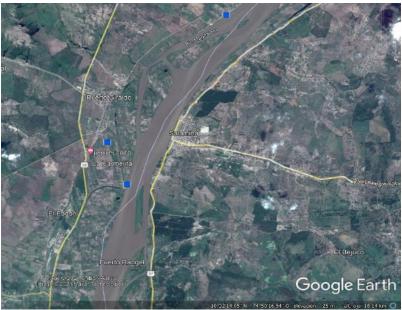


Figura 3.2.4-69 Imagen Satelital Río Magdalena Fenómeno Niño (2014-2016)

Fuente: SGS Colombia, 2021

Lewis Energy Colombia, Inc.

Versión No. 0. 12.2021

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

Este análisis de dinámica fluvial se desarrolló para las 161 ocupaciones de cauce a solicitar por la presente Modificación de Licencia. Se presenta el Anexo F_carteras de campo_hidrología Análisis Dinámica Fluvial, que incluye la información para cada cuerpo de agua donde se plantea una ocupación.

3.2.4.14 Susceptibilidad a la inundación

En este ítem se desarrolla el análisis de las inundaciones para las áreas del proyecto y el área de influencia fisicobiótica; estos eventos son amenazas naturales presentes, las cuales hacen referencia a las manifestaciones de los fenómenos de origen externo.

Para el estudio de la susceptibilidad a la inundación se precisa la zona en cuanto a la dinámica hidrológica y climática y se detallan las condiciones geomorfológicas propias del área. El análisis de las áreas susceptibles a inundación se divide en dos fases: la primera consiste en la verificación de información secundaria relacionada con el tema de inundaciones, específicamente del mapa de inundaciones elaborado por el Instituto de Hidrología y Estudios Ambientales de Colombia¹⁸ y el Esquema de Ordenamiento Territorial de los municipios de interés y la segunda fase consiste en el análisis biofísico para la determinación de dichas zonas inundables.

Se realizó un análisis de trasposición de capas de información de acuerdo con la Guía para el acotamiento de las rondas hídricas de 2012¹⁹ y 2018²⁰, las cuales especifican tres componentes:

Hidrológico: A partir de la red hidrográfica del área de influencia y tomando una franja adyacente a los cuerpos lóticos como la de máxima probabilidad de inundaciones.

Cobertura de la tierra: A partir de la información obtenida del mapa de cobertura de la tierra se verificó la información que pueda tener relación con la susceptibilidad a la inundación de los diferentes tipos de coberturas.

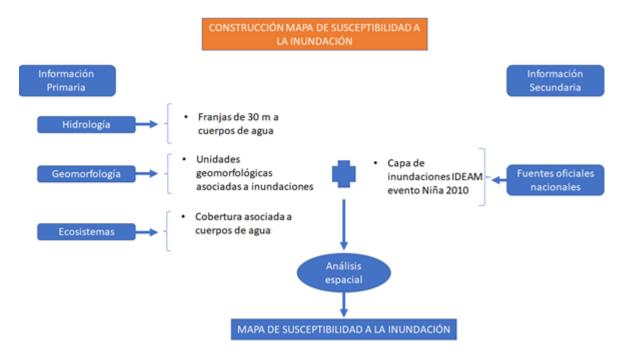
_

¹⁸ IDEAM. Mapa de inundaciones periódicas, 2011

¹⁹MADS. Guía para el acotamiento de las rondas hídricas, 2012.

²⁰ MADS. Guía para el acotamiento de las rondas hídricas, 2018.

Versión No. 0. 12.2021


CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

Geomorfológico: A partir de las formas de terreno asociadas a cada tipo de relieve se definió la franja inundable de cada corriente de agua, así como los tipos de relieve susceptibles de inundación.

Según lo evidenciado en la superposición de información, se determinaron aquellas superficies que presentan mayor susceptibilidad a la inundación asignando una escala de valoración de muy alta, alta, media y baja. Cabe anotar que el presente análisis corresponde a una interpretación de la susceptibilidad de las áreas, basadas en el comportamiento hidrológico, cobertura de la tierra y las formas del terreno (geomorfología) e información secundaria, presentes en el área de influencia en un tiempo y espacio determinado.

En la **Figura 3.2.4-70** se describe detalladamente la metodología desarrollada en cada una de las etapas.

Figura 3.2.4-70 Metodología para la generación del mapa de susceptibilidad a la inundación

Fuente: ETSA. 2021, adaptado de la Guía para el acotamiento de las rondas hídricas (MADS, 2012). Se tomó la capa de inundaciones del evento Niña del año 2010 del IDEAM como una superficie con una susceptibilidad a la inundación muy alta.

Versión No. 0. 12.2021

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

El aporte hidrológico se realizó a partir de una franja de 30 m asociada a cuerpos permanentes e intermitentes, así como del embalse El Guájaro.

En cuanto a las coberturas, se hizo una clasificación de las coberturas de la tierra por su susceptibilidad a estar expuestas a inundaciones. En la **Tabla 3.2.4-37** se presenta la clasificación definida.

Tabla 3.2.4-37 Susceptibilidad a la inundación coberturas

COBERTURA	CAL	SUSCEPTIBILIDAD	TOTAL
Arbustal denso	3	Media	2091,91
Bosque de galeria	5	Muy alta	1491,53
Bosque fragmentado con vegetación secundaria	3	Media	629,39
Canales	5	Muy alta	5,10
Estanques para acuicultura continental	3	Muy alta	93,63
Explotación de hidrocarburos	1	Muy baja	20,85
Explotación de materiales de construcción	2	Baja	54,50
Instalaciones recreativas	1	Muy baja	8,78
Jaguey	5	Muy alta	940,84
Lagunas de oxidación	5	Muy alta	7,84
Mango		Baja	364,86
Mosaico de cultivos		Baja	726,29
Mosaico de pastos y cultivos		Baja	15,95
Otros cultivos permanentes arboreos		Baja	90,01
Otros cultivos transitorios	2	Baja	99,47
Palma de aceite		Baja	71,26
Pastos arbolados		Baja	14798,36
Pastos enmalezados		Baja	14596,41
Pastos limpios		Baja	14022,28
Plantación forestal		Baja	303,43
Playas	5	Muy alta	15,16
Red vial y territorios asociados	1	Muy baja	240,81
Ríos	5	Muy alta	9,08
Tejido urbano continuo		Baja	956,95
Tejido urbano discontinuo	2	Baja	69,48
Tierras desnudas y degradadas		Baja	122,68
Vegetación secundaria alta		Baja	1778,76
Vegetación secundaria baja	3	Media	12504,12
Zonas industriales	1	Muy baja	87,07

Versión No. 0. 12.2021

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

COBERTURA	CAL	SUSCEPTIBILIDAD	TOTAL
Zonas pantanosas	5	Muy alta	767,75
Total general	66984,51		

Fuente: SGS Colombia, 2022

En cuanto a la geomorfología, se hizo una clasificación de las geoformas presentes en el área de influencia, por su susceptibilidad a estar expuestas a inundaciones. En la tabla **Tabla 3.2.4-38** se presenta la clasificación definida.

Tabla 3.2.4-38 Susceptibilidad a la inundación geomorfología

		. 9		
GEOMORFOLOGÍA	CAL	SUSCEPTIBILIDAD	TOTAL	
Campo de dunas remontantes	•	Baja	4865,73	
Canteras	2	Baja	140,70	
Cauce activo	5	Muy alta	9,08	
Cerro remanente o relicto	2	Baja	7,37	
Cono y lóbulo coluvial		Alta	3465,85	
Cono y lóbulo de solifluxión	4	Alta	3244,35	
Jagüey		Alta	941,95	
Ladera de contrapendiente de cuesta	1	Muy baja	184,61	
Ladera estructural de cuesta	1	Muy baja	635,79	
Ladera ondulada		Baja	7721,33	
Loma denudada		Baja	1295,02	
Loma residual		Baja	519,81	
Lomeríos disectados		Baja	4572,37	
Lomeríos pocos disectados	2	Baja	10656,98	
Lomo denudado bajo de longitud larga		Baja	1599,66	
Lomos estructurales		Baja	213,73	
Montículo y ondulaciones denudacionales		Baja	3503,54	
Plano anegadizo	4	Alta	827,66	
Plano o llanura de inundación	4	Alta	628,74	
Planos de llenos antrópicos	1	Muy baja	1000,08	
Presas piscícolas	4	Alta	89,22	
Terraza basculada	2	Media	8096,45	
Terraza de acumulación antigua	3	Media	12764,51	
Total gen	eral		66984,51	

Fuente: SGS Colombia, 2021

Finalmente se elaboró el empalme entre la información primaria y secundaria referente a la hidrología, coberturas de la tierra y geomorfología, permitiendo

Versión No. 0. 12.2021

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

identificar las diferentes zonas de susceptibilidad a la inundación en las categorías de muy alta, alta, media y baja. En la **Tabla 3.2.4-39** se presenta la matriz de la sensibilidad por inundaciones y en la **Figura 3.2.4-71** se presenta la distribución espacial de la susceptibilidad a la inundación. La clase más representativa es la moderada, con cerca del 40 % del AI, seguida por la susceptibilidad baja con poco más que 34 %, posteriormente muy alta susceptibilidad con cerca del 25 % asociada a los principales arroyos, el río Magdalena y el embalse El Guájaro, por último, las clases alta y muy baja susceptibilidad tienen un aporte cuasi insignificante (<0.1 %).

Versión No. 0. 12.2021

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

Tabla 3.2.4-39 Tabla Resumen de criterios de delimitación de susceptibilidad a la inundación

SUSCEPTIBILIDAD A LA INUNDACIÓN	DESCRIPCIÓN	VALORACIÓN	ÁREA (ha)	PROPORCIÓN AI (%)	SENSIBILIDAD
Muy alta susceptibilidad	Hidrología: franja de 30 m a lado y lado de drenajes sencillos y dobles.	5	3.111,93	4,65%	Muy alta
Alta susceptibilidad	Coberturas: Bosque de galería, Canales, Embalse, Jagüey, Laguna de oxidación, Estanques para acuicultura continental, Playas, Ríos, Zonas pantanosas. Geomorfología: Cauce activo, Cono y lóbulo coluvial y de solifluxión y de solifluxión, Cono y lóbulo de solifluxión, Laguna, Plano anegadizo, Plano o llanura de inundación y Presas piscícolas	4	12.253,48	18,29%	Alta
Moderada susceptibilidad	Coberturas: Arbustal denso, Bosque fragmentado con vegetación secundaria y Vegetación secundaria baja. Geomorfología: terraza basculada, terraza de acumulación antigua.	3	28.336,29	42,30%	Moderada
Baja susceptibilidad	Coberturas: Explotación de materiales de construcción, Mango Mosaico de cultivos, Mosaico de pastos y cultivos, Otros cultivos permanentes arbóreos, Otros cultivos transitorios, Palma de aceite, Pastos arbolados, Pastos enmalezados, Pastos limpios Plantación forestal, Tejido urbano continuo, Tejido urbano discontinuo, Tierras desnudas y degradadas, Vegetación secundaria alta. Geomorfología: Campo de dunas remontantes, Canteras Cerro remanente o relicto, Ladera ondulada, Loma denudada Loma residual, Lomeríos disectados, Lomeríos muy disectados lomeríos pocos disectados, Lomo denudado bajo de longitud larga, Lomos, Montículo y ondulaciones denudacionales	2	23.262,25	34,73%	Baja
Muy Baja susceptibilidad	Coberturas: Explotación de hidrocarburos, Instalaciones recreativas, Red vial y territorios asociados y Zonas industriales. Geomorfología: Ladera de contrapendiente de cuesta, Ladera estructura de cuesta, Ladera estructura de cuesta, Planos de llenos antrópicos.	1	20,57	0,03%	Muy baja

Versión No. 0. 12.2021

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

SUSCEPTIBILIDAD A LA INUNDACIÓN	DESCRIPCIÓN	VALORACIÓN	ÁREA (ha)	PROPORCIÓN AI (%)	SENSIBILIDAD
	TOTAL ÁREAS		67151.9824	100%	

Fuente: SGS Colombia, 2021

Versión No. 0. 12.2021

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

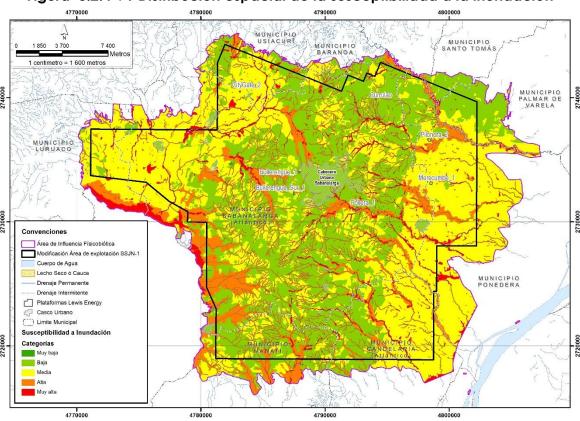


Figura 3.2.4-71 Distribución espacial de la susceptibilidad a la inundación

Fuente: Fuente: SGS Colombia, 2021

3.2.4.15 Indicadores hidroclimatológicos

Se calculó una variedad de indicadores hidroclimáticos que permiten reconocer el estado del recurso hídrico superficial de manera rápida y sintetizada. Los indicadores evaluados son: índice de aridez (IA), índice de retención y regulación hídrica (IRH), índice de uso del agua (IUA) e índice de vulnerabilidad por desabastecimiento hídrico (IVH). A continuación, se describen y calculan cada uno de ellos.

3.2.4.15.1 Índice de aridez (IA)

El índice de aridez (IA) califica cualitativamente las condiciones naturales de aridez, midiendo el grado de suficiencia o insuficiencia de la precipitación para el sostenimiento de los ecosistemas de una región. A lo largo de la historia, el IA ha estado en constante evolución y en Colombia, se adoptó una relación entre la ETP y ETR (Instituto de Hidrología, Meteorología y Estudios Ambientales - IDEAM, 2010) (Instituto de Hidrología, Meteorología y Estudios Ambientales - IDEAM, 2015) con el

Versión No. 0. 12.2021

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

objeto de representar la dinámica superficial del suelo. La ecuación utilizada es la siguiente:

$$IA = \frac{ETP - ETR}{ETP}$$

Donde:

IA: Índice de aridez,

ETP: Evapotranspiración potencial anual multianual en mm,

ETR: Evapotranspiración real potencial anual multianual.

Los rangos de clasificación del IA se presentan en la Tabla 3.2.4-40.

Tabla 3.2.4-40 Rangos de clasificación del índice de aridez (IA)

RANGOS DE VALORES DEL INDICADOR	CALIFICACIÓN
(0,0 - 0,15)	Altos Excedentes
[0,15 - 0,20]	Excedentes
[0,20 - 0,30]	Moderado a excedentes
[0,30 - 0,40]	Moderado
[0,40 - 0,50)	Moderado a Deficitario
[0,50 - 0,60)	Deficitario
[0,60 – 1,00)	Altamente deficitario

Fuente: (Instituto de Hidrología, Meteorología y Estudios Ambientales - IDEAM, 2019)

Se realizó el cálculo del IA para las unidades hidrográficas definidas en el AI y los resultados se presentan en la **Tabla 3.2.4-41.**

Tabla 3.2.4-41 Índice de aridez (IA) de las unidades hidrográficas en el Al

UNIDAD HIDROGRÁFICA	ETP (mm)	ETR (mm)	IA	DESCRIPCIÓN
Afluente NN al Embalse El Guájaro	1792,4	997,2	0,44	Moderado a Deficitario
Afluente NN1 al Embalse El Guájaro	1792,4	1148,0	0,36	Moderado
Afluente NN2 al Embalse El Guájaro	1792,4	1148,0	0,36	Moderado

Versión No. 0. 12.2021

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

UNIDAD HIDROGRÁFICA	ETP (mm)	ETR (mm)	IA	DESCRIPCIÓN
Afluente NN3 al Embalse El Guájaro	1792,4	1042,2	0,42	Moderado a Deficitario
Arroyo Barro (Arroyo Mono)	1792,4	957,1	0,47	Moderado a Deficitario
Arroyo Bejuco	1792,4	944,2	0,47	Moderado a Deficitario
Arroyo de Las Piedras	1792,4	951,3	0,47	Moderado a Deficitario
Arroyo El Salado	1792,4	987,7	0,45	Moderado a Deficitario
Arroyo Gallego	1792,4	1020,2	0,43	Moderado a Deficitario
Arroyo Grande	1792,4	976,1	0,46	Moderado a Deficitario
Arroyo Guanábano	1792,4	906,9	0,49	Moderado a Deficitario
Arroyo Guayepo	1792,4	988,2	0,45	Moderado a Deficitario
Arroyo La Peña	1792,4	1148,0	0,36	Moderado
Arroyo Leña	1792,4	947,7	0,47	Moderado a Deficitario
Arroyo Malavet	1792,4	999,4	0,44	Moderado a Deficitario
Arroyo Manga	1792,4	992,2	0,45	Moderado a Deficitario
Arroyo Mendoza	1792,4	1148,0	0,36	Moderado
Arroyo Molinero	1792,4	1002,7	0,44	Moderado a Deficitario
Arroyo NN	1792,4	926,2	0,48	Moderado a Deficitario
Arroyo NN1	1792,4	1029,8	0,43	Moderado a Deficitario
Arroyo NN3	1792,4	975,3	0,46	Moderado a Deficitario
Arroyo NN5	1792,4	909,7	0,49	Moderado a Deficitario
Arroyo Orijata	1792,4	929,7	0,48	Moderado a Deficitario
Arroyo Pantano	1792,4	1054,2	0,41	Moderado a Deficitario
Arroyo Platanal	1792,4	962,6	0,46	Moderado a Deficitario
Arroyo Regolledo 1	1792,4	1148,0	0,36	Moderado
Arroyo Regolledo 2	1792,4	1148,0	0,36	Moderado
Arroyo Rico	1792,4	1148,0	0,36	Moderado
Arroyo Salado	1792,4	1124,2	0,37	Moderado
Directos al embalse El Guájaro	1792,4	1076,3	0,40	Moderado a Deficitario
Directos al Río Magdalena	1792,4	933,2	0,48	Moderado a Deficitario
Espejo de agua Embalse El Guájaro	1792,4	1053,3	0,41	Moderado a Deficitario

Fuente: SGS Colombia, 2021

Se encuentra que 26 de las 35 unidades hidrográficas (74%) tienen un IA moderado a deficitario, 8 tienen un IA moderado (23%) y 1 es deficitaria de agua (3%). Este escenario muestra que existe disponibilidad de agua para el proceso de evapotranspiración, la cual es aportada por las precipitaciones que oscilan entre 900 mm y 1600 mm en el área de influencia. Sin embargo, al ser tan alto el potencial

Versión No. 0. 12.2021

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

de evapotranspiración, las pérdidas hidrológicas son muy altas y no se tiene disponibilidad de agua en los cauces de agua del área de influencia.

3.2.4.15.2 Índice de retención y regulación hídrica (IRH)

El Índice de retención y de regulación evalúa la capacidad de la cuenca para mantener un régimen de caudales, producto de la interacción del sistema suelos vegetación con las condiciones climáticas y con las características físicas morfométricas de la cuenca. Este índice permite evaluar la capacidad de regulación del sistema en su conjunto.

El índice se calculó con base en la curva de duración de caudales que permite reconocer las condiciones de regulación de la cuenca y los valores característicos medios de caudales, e interpretar, en forma general, las características del régimen hidrológico de un cuerpo de agua y el comportamiento de la retención y la regulación de humedad en la cuenca.

La expresión matemática de cálculo es la siguiente:

$$IRH = \frac{V50}{Vt}$$

Donde:

IRH: índice de retención y regulación hídrica,

V50: volumen representado por el área bajo del Q50 de la curva de duración de caudales, v

Vt: volumen total representado por el área bajo la curva de duración de caudales.

El IRH se clasifica en distintos rangos tal como se presenta en la **Tabla 3.2.4-42**.

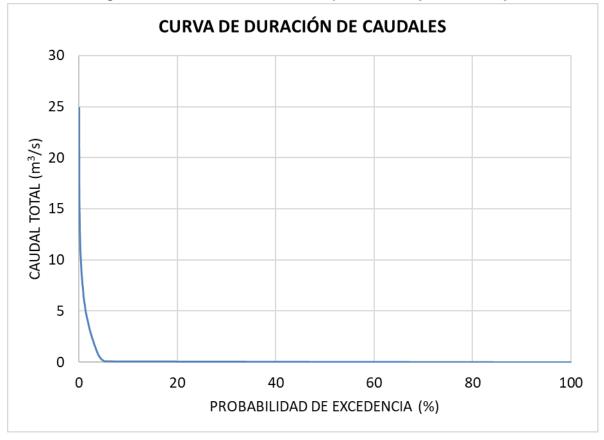
Tabla 3.2.4-42 Rangos de clasificación del índice de retención y regulación hídrica (IRH)

RANGOS DE VALORES DEL INDICADOR	CALIFICACIÓN	DESCRIPCIÓN
IRH > 0,85	Muy Alta	Muy alta retención y regulación de humedad
0,75 < IRH < 0,85	Alta	Alta retención y regulación de humedad
0,65 <irh 0,75<="" <="" td=""><td>Moderada</td><td>Media retención y regulación de humedad</td></irh>	Moderada	Media retención y regulación de humedad
0,50 < IRH < 0,65	Baja	Baja retención y regulación de humedad

Versión No. 0. 12.2021

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

RANGOS DE VALORES DEL INDICADOR	CALIFICACIÓN	DESCRIPCIÓN
IRH < 0,50	Muy Baja	Muy Baja retención y regulación de humedad


Fuente: (Instituto de Hidrología, Meteorología y Estudios Ambientales - IDEAM, 2019)

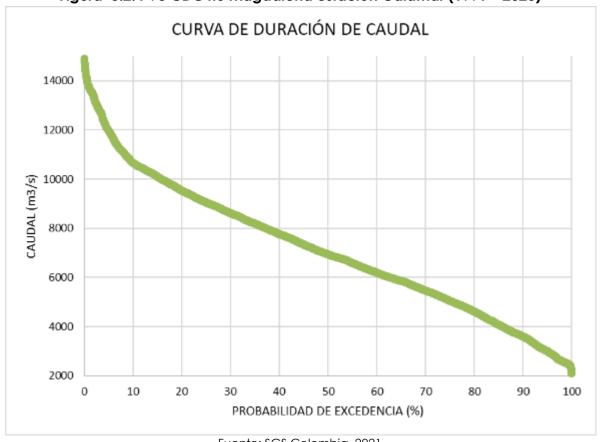
Las curvas de duración de caudales se presentan en el AnexoF_carteras de campo_hidrologia – Curvas de Duración de Caudal. En la **Figura 3.2.4-72** se presenta a modo de ejemplo la CDC de la cuenca arroyo Pantano y en la **Figura 3.2.4-73** se presenta la CDC del río Magdalena a la altura de la estación Calamar. Se puede observar la diferencia entre la CDC de un arroyo intermitente como el arroyo Pantano, que presenta una caída muy rápida del caudal, y un cuerpo de agua permanente como el río Magdalena, que sostiene los caudales a lo largo del tiempo.

Versión No. 0. 12.2021

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

Figura 3.2.4-72 CDC cuenca arroyo Pantano (1991 – 2017)

Fuente: SGS Colombia, 2021



Versión No. 0. 12.2021

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

Figura 3.2.4-73 CDC río Magdalena estación Calamar (1991 – 2020)

Fuente: SGS Colombia, 2021

En la **Tabla 3.2.4-43** se presenta el cálculo del IRH para las unidades hidrográficas delimitadas en el proyecto. Se encuentra que en treinta y tres (33) de las treinta y cinco (35) unidades hidrográficas (94 %) un IRH muy bajo, lo que se relaciona perfectamente con la intermitencia de los arroyos en el área de influencia. Hay dos (2) unidades hidrográficas con IRH alto (6 %) relacionada con los directos al Magdalena a partir del caudal de la estación Calamar y el espejo del embalse El Guájaro porque es un cuerpo léntico permanente y con base en el IRH reportado para esta unidad hidrográfica en el POMCA del Canal del Dique (Corporación Autónoma Regional del Atlántico - CRA, 2018).

Tabla 3.2.4-43 Índice de retención y regulación hídrica de las unidades hidrográficas del Al

UNIDAD HIDROGRÁFICA	Vt	V50	IRH	DESCRIPCIÓN
Afluente NN al Embalse El Guájaro	16,96	0	0,00	Muy Baja retención y regulación de humedad

Versión No. 0. 12.2021

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

UNIDAD HIDROGRÁFICA	Vt	V50	IRH	DESCRIPCIÓN
Afluente NN1 al Embalse El Guájaro	9,838	0	0,00	Muy Baja retención y regulación de humedad
Afluente NN2 al Embalse El Guájaro	14,608	0	0,00	Muy Baja retención y regulación de humedad
Afluente NN3 al Embalse El Guájaro	6,865	0	0,00	Muy Baja retención y regulación de humedad
Arroyo Barro (Arroyo Mono)	9,243	0	0,00	Muy Baja retención y regulación de humedad
Arroyo Bejuco	9,888	0	0,00	Muy Baja retención y regulación de humedad
Arroyo de Las Piedras	9,845	0	0,00	Muy Baja retención y regulación de humedad
Arroyo El Salado	14,53	0	0,00	Muy Baja retención y regulación de humedad
Arroyo Gallego	33,159	0	0,00	Muy Baja retención y regulación de humedad
Arroyo Grande	124,55	0	0,00	Muy Baja retención y regulación de humedad
Arroyo Guanábano	15,827	0	0,00	Muy Baja retención y regulación de humedad
Arroyo Guayepo	80,895	0	0,00	Muy Baja retención y regulación de humedad
Arroyo La Peña	15,659	0	0,00	Muy Baja retención y regulación de humedad
Arroyo Leña	14,19	0	0,00	Muy Baja retención y regulación de humedad
Arroyo Malavet	12,525	0	0,00	Muy Baja retención y regulación de humedad
Arroyo Manga	36,288	0	0,00	Muy Baja retención y regulación de humedad
Arroyo Mendoza	13,214	0	0,00	Muy Baja retención y regulación de humedad
Arroyo Molinero	212,21	0	0,00	Muy Baja retención y regulación de humedad
Arroyo NN	8,456	0	0,00	Muy Baja retención y regulación de humedad
Arroyo NN1	27,329	0	0,00	Muy Baja retención y regulación de humedad
Arroyo NN3	8,35	0	0,00	Muy Baja retención y regulación de humedad
Arroyo NN5	0,876	0	0,00	Muy Baja retención y regulación de humedad
Arroyo Orijata	18,985	0	0,00	Muy Baja retención y regulación de humedad
Arroyo Pantano	23,429	0	0,00	Muy Baja retención y regulación de humedad
Arroyo Platanal	93,295	0	0,00	Muy Baja retención y regulación de humedad
Arroyo Regolledo 1	0,4	0,014	0,04	Muy Baja retención y regulación de humedad

Versión No. 0. 12.2021

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

UNIDAD HIDROGRÁFICA	Vt	V50	IRH	DESCRIPCIÓN
Arroyo Regolledo 2	1,206	0,022	0,02	Muy Baja retención y regulación de humedad
Arroyo Rico	3,621	0	0,00	Muy Baja retención y regulación de humedad
Arroyo Salado	64,209	0	0,00	Muy Baja retención y regulación de humedad
Directos al embalse El guájaro	NA	NA	NA	Muy Baja retención y regulación de humedad
Directos al Río Magdalena	714157	592280	0,83	Alta retención y regulación de humedad
Espejo de agua Embalse El Guájaro	NA	NA	NA	Alta retención y regulación de humedad

Fuente: SGS Colombia, 2021

3.2.4.15.3 Índice de uso del agua (IUA)

De acuerdo con el Estudio Nacional del Agua 2014 (Instituto de Hidrología, Meteorología y Estudios Ambientales - IDEAM, 2015), el IUA relaciona la cantidad de agua utilizada por los diferentes sectores y usuarios, en un periodo determinado y en una unidad espacial de análisis dada, con respecto a la oferta hídrica superficial disponible (OHSD) en ese mismo periodo y espacio. La OHSD es la cantidad de agua que se encuentra disponible en una cuenca para ser aprovechada. Se calcula como la sustracción del volumen por caudal ambiental a la oferta hídrica total superficial. Es importante aclarar que las ofertas hídricas están concebidas como un volumen y no como un caudal.

La fórmula para el cálculo del IUA es la siguiente:

$$IUA = \frac{Dh}{OHSD} \times 100$$

Donde,

Dh: es la demanda hídrica sectorial.

OHSD: Oferta hídrica superficial disponible, calculada como:

$$OHSD = OHTS - O_{Ambiental}$$

OHTS: volumen total de agua superficial

O_{Ambiental}: volumen de agua correspondiente al caudal ambiental

El IUA se clasifica en seis categorías tal como se presenta en la Tabla 3.2.4-44.

Versión No. 0. 12.2021

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

Tabla 3.2.4-44 Clasificación del IUA

RANGO DE VALORES	CATEGORÍA
(0 -1)	Muy bajo
[1 a 10)	Bajo
[10 a 20)	Moderado
[20 a 50)	Alto
[50 a 100)	Muy alto
>= 100	Crítico

Fuente: (Instituto de Hidrología, Meteorología y Estudios Ambientales - IDEAM, 2010)

La OHSD – Oferta hídrica total superficial se calculó a partir de los caudales simulados en el software HEC-HMS presentados en el numeral 3.2.4.10 Régimen hidrológico de caudales medios, excepto para la unidad hidrográfica del espejo de agua del embalse El Guájaro, que por ser un cuerpo léntico se tomó directamente de lo aportado en el POMCA del Canal del Dique (Corporación Autónoma Regional del Atlántico - CRA, 2018).

El caudal ambiental fue calculado basado en la curva de duración de caudal (CDC), teniendo en cuenta lo propuesto en el ENA 2014 (Instituto de Hidrología, Meteorología y Estudios Ambientales - IDEAM, 2015) para el cálculo del caudal ambiental. El algoritmo es el siguiente:

- Se calcula el IRH de la unidad hidrográfica de interés.
- Si el IRH es mayor que 0.7 el caudal ambiental se define como el Q85 de la CDC.
- Si el IRH es menor que 0.7 el caudal ambiental se define como el Q75 de la CDC.

La demanda hídrica se calculó a partir de la demanda hídrica estimada en estudios oficiales (POMCA Canal del Dique y Estudio Nacional del Agua 2018) en las unidades de análisis superiores a las unidades hidrográficas definidas en el estudio. Las unidades hidrográficas pertenecientes a la subzona 2904 Directos al Magdalena entre Calamar y Desembocadura no tienen POMCA, por lo que se decidió tomar como representativo el valor de demanda del nivel subsiguiente contiguo, que es el 2903-01, teniendo en cuenta que se tienen características de uso del agua similares en toda la zona. Los valores de demanda base se presentan en la **Tabla 3.2.4-45.**

Versión No. 0. 12.2021

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

Tabla 3.2.4-45 Valores de referencia de la demanda hídrica

UNIDAD HIDROGRÁFICA MAYOR	NOMBRE	ÁREA (ha)	Demanda Hídrica (m³/año)	Dh/Área (m³/s/ha)
2903-01	Norte Embalse Guájaro	49800,73	584799	3,7211E-07
2903-02	Oriental Embalse Guájaro y Canal del Dique	33557,61	0	0
2904	Directos al Bajo Magdalena entre Calamar y desembocadura al mar Caribe	NA	275000000	NA

Fuente: (Corporación Autónoma Regional del Atlántico - CRA, 2018) y (Instituto de Hidrología, Meteorología y Estudios Ambientales - IDEAM, 2015)

Por último, se calculó el IUA a partir de la información previamente descrita y con la metodología referenciada. Los resultados se presentan en la Tabla 3.2.4-46 y los cálculos se presentan en el Anexo_F_carteras de campo_hidrologia – Indicadores Hidroclimatológicos.

El IUA muestra que todas las unidades hidrográficas de las corrientes menores tienen una clasificación de muy bajo, lo que indica que, aunque no hay gran disponibilidad de agua, no se tienen mayores demandas de agua. La unidad hidrográfica Directos al río Magdalena tiene un IUA bajo, lo que indica que el gran caudal que transporta el río es suficiente para soportar la demanda de agua que se da en la zona. El IUA del espejo de agua del embalse El Guájaro fue heredado del reportado por el POMCA del Canal del Dique, siendo su clasificación de bajo debido a la elevada disponibilidad de agua del embalse con respecto a la demanda.

Versión No. 0. 12.2021

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

Tabla 3.2.4-46 Índice de uso del agua (IUA) de las unidades hidrográficas del Al

UNIDAD HIDROGRÁFICA	OHTS (Mm³)	Q Ambiental (Mm³)	OHTD (Mm³)	Dh (Mm³)	IUA	DESCRIPCIÓN
Afluente NN al Embalse El Guájaro	3,773	0,000	3,773	0,0	0,53	Muy Bajo
Afluente NN1 al Embalse El Guájaro	1,527	0,000	1,527	0,0	0,30	Muy Bajo
Afluente NN2 al Embalse El Guájaro	3,033	0,000	3,033	0,0	0,30	Muy Bajo
Afluente NN3 al Embalse El Guájaro	0,589	0,000	0,589	0,0	0,45	Muy Bajo
Arroyo Barro (Arroyo Mono)	1,340	0,000	1,340	1,4	0,62	Muy Bajo
Arroyo Bejuco	1,545	0,000	1,545	1,7	0,66	Muy Bajo
Arroyo de Las Piedras	1,531	0,000	1,531	1,6	0,64	Muy Bajo
Arroyo El Salado	3,003	0,000	3,003	0,0	0,55	Muy Bajo
Arroyo Gallego	8,883	0,000	8,883	7,2	0,49	Muy Bajo
Arroyo Grande	37,630	0,000	37,630	36,0	0,58	Muy Bajo
Arroyo Guanábano	3,414	0,000	3,414	4,3	0,77	Muy Bajo
Arroyo Guayepo	24,034	0,000	24,034	21,9	0,55	Muy Bajo
Arroyo La Peña	3,367	0,000	3,367	0,0	0,30	Muy Bajo
Arroyo Leña	2,900	0,000	2,900	3,1	0,65	Muy Bajo
Arroyo Malavet	2,372	0,000	2,372	0,0	0,00	Muy Bajo
Arroyo Manga	9,871	0,000	9,871	8,9	0,54	Muy Bajo
Arroyo Mendoza	2,594	0,000	2,594	0,0	0,30	Muy Bajo
Arroyo Molinero	65,716	0,000	65,716	0,3	0,52	Muy Bajo
Arroyo NN	1,090	0,000	1,090	1,3	0,71	Muy Bajo
Arroyo NN1	7,048	0,000	7,048	5,5	0,47	Muy Bajo
Arroyo NN3	1,058	0,000	1,058	1,0	0,58	Muy Bajo
Arroyo NN5	0,271	0,000	0,271	0,0	0,00	Muy Bajo
Arroyo Orijata	4,415	0,000	4,415	5,1	0,70	Muy Bajo
Arroyo Pantano	5,815	0,000	5,815	0,0	0,00	Muy Bajo

SGS ETUDIOS

Versión No. 0. 12.2021

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

UNIDAD HIDROGRÁFICA	OHTS (Mm³)	Q Ambiental (Mm³)	OHTD (Mm³)	Dh (Mm³)	IUA	DESCRIPCIÓN
Arroyo Platanal	27,850	0,000	27,850	0,2	0,61	Muy Bajo
Arroyo Regolledo 1	0,126	0,004	0,122	0,0	0,31	Muy Bajo
Arroyo Regolledo 2	0,381	0,007	0,374	0,0	0,31	Muy Bajo
Arroyo Rico	1,140	0,000	1,140	0,0	0,30	Muy Bajo
Arroyo Salado	20,243	0,000	20,243	0,1	0,33	Muy Bajo
Directos al embalse El Guájaro	22,676	0,000	22,676	0,1	0,39	Muy Bajo
Directos al Río Magdalena	6655,244	4702,7788	1952,465	11,0908	0,57	Muy Bajo
Espejo de agua Embalse El Guájaro	NA	NA	NA	NA	1,03*	Baja

^{*}Valor tomado del POMCA Canal del Dique (Corporación Autónoma Regional del Atlántico - CRA, 2018) Fuente: SGS Colombia, 2021

Versión No. 0. 12.2021

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

3.2.4.15.4 Índice de vulnerabilidad por desabastecimiento hídrico - IVH

De acuerdo con el ENA 2014, el índice de vulnerabilidad hídrica (IVH) mide el grado de fragilidad del sistema hídrico para mantener una oferta en el abastecimiento de agua, que ante amenazas naturales como periodos largos de estiaje, podría generar riesgos de desabastecimiento (Instituto de Hidrología, Meteorología y Estudio Ambientales - IDEAM, 2010). Este indicador se determina a través de una matriz de relación de rangos del Índice de regulación hídrica (IRH) y el Índice de uso de aqua (IUA) (ver Tabla 3.2.4-47)

IUA Extremo = porcentaje (Oferta/demanda) Índice de regulación Categoría Alta Moderado Muy baja Rango Baja <1 Muy bajo Muy baja Baja Media Media Bajo Baja Baja 1 - 10 Media Media 10 - 20Moderado Media Media Alta Alta Alto Muy alta 20 - 50 Media Alta Alta 50 - 100 Muy alto Media Alta Alta Muy alta Crítico > 100 Muy alta

Tabla 3.2.4-47 Clasificación del IVH

Fuente: (Instituto de Hidrología, Meteorología y Estudios Ambientales - IDEAM, 2010)

Así las cosas, se procedió a definir el IVH para cada unidad hidrográfica del estudio (ver Tabla 3.2.4-48). Se encontró que en la totalidad de las unidades hidrográficas de las corrientes menores el IVH es medio, debido a la baja retención de agua de las cuencas. Por otra parte, el embalse El Guájaro tiene un IVH bajo por el gran volumen de agua almacenado en el cuerpo léntico. Por último, el río Magdalena tiene una vulnerabilidad muy baja en el área del proyecto, teniendo en cuenta que el volumen de agua transportado es inmenso y es capaz de soportar la demanda de agua y los posibles efectos de disminución de caudales por efecto de fenómenos climáticos.

Versión No. 0. 12.2021

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

Tabla 3.2.4-48 Índice de vulnerabilidad por desabastecimiento hídrico (IVH) de las unidades hidrográficas del Al

UNIDAD HIDDOCDÁFICA IIIA			
UNIDAD HIDROGRÁFICA	IUA	IRH	IVH
Afluente NN al Embalse El Guájaro	Muy Bajo	Muy Baja retención y regulación de humedad	Media
Afluente NN1 al Embalse El Guájaro	Muy Bajo	Muy Baja retención y regulación de humedad	Media
Afluente NN2 al Embalse El Guájaro	Muy Bajo	Muy Baja retención y regulación de humedad	Media
Afluente NN3 al Embalse El Guájaro	Muy Bajo	Muy Baja retención y regulación de humedad	Media
Arroyo Barro (Arroyo Mono)	Muy Bajo	Muy Baja retención y regulación de humedad	Media
Arroyo Bejuco	Muy Bajo	Muy Baja retención y regulación de humedad	Media
Arroyo de Las Piedras	Muy Bajo	Muy Baja retención y regulación de humedad	Media
Arroyo El Salado	Muy Bajo	Muy Baja retención y regulación de humedad	Media
Arroyo Gallego	Muy Bajo	Muy Baja retención y regulación de humedad	Media
Arroyo Grande	Muy Bajo	Muy Baja retención y regulación de humedad	Media
Arroyo Guanábano	Muy Bajo	Muy Baja retención y regulación de humedad	Media
Arroyo Guayepo	Muy Bajo	Muy Baja retención y regulación de humedad	Media
Arroyo La Peña	Muy Bajo	Muy Baja retención y regulación de humedad	Media
Arroyo Leña	Muy Bajo	Muy Baja retención y regulación de humedad	Media
Arroyo Malavet	Muy Bajo	Muy Baja retención y regulación de humedad	Media
Arroyo Manga	Muy Bajo	Muy Baja retención y regulación de humedad	Media
Arroyo Mendoza	Muy Bajo	Muy Baja retención y regulación de humedad	Media
Arroyo Molinero	Muy Bajo	Muy Baja retención y regulación de humedad	Media
Arroyo NN	Muy Bajo	Muy Baja retención y regulación de humedad	Media
Arroyo NN1	Muy Bajo	Muy Baja retención y regulación de humedad	Media
Arroyo NN3	Muy Bajo	Muy Baja retención y regulación de humedad	Media
Arroyo NN5	Muy Bajo	Muy Baja retención y regulación de humedad	Media
Arroyo Orijata	Muy Bajo	Muy Baja retención y regulación de humedad	Media
Arroyo Pantano	Muy Bajo	Muy Baja retención y regulación de humedad	Media
Arroyo Platanal	Muy Bajo	Muy Baja retención y regulación de humedad	Media
Arroyo Regolledo 1	Muy Bajo	Muy Baja retención y regulación de humedad	Media
Arroyo Regolledo 2	Muy Bajo	Muy Baja retención y regulación de humedad	Media
Arroyo Rico	Muy Bajo	Muy Baja retención y regulación de humedad	Media
Arroyo Salado	Muy Bajo	Muy Baja retención y regulación de humedad	Media
Directos al embalse El guájaro	Muy Bajo	Muy Baja retención y regulación de humedad	Media
Directos al Río Magdalena	Muy Bajo	Alta retención y regulación de humedad	Muy baja
Espejo de agua Embalse El Guájaro	Bajo	Alta retención y regulación de humedad	Ваја

Versión No. 0. 12.2021

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

3.2.4.16 Posibles fuentes de contaminación

En el área de influencia se identifican fuentes de contaminación que pueden llegar a afectar la calidad del agua superficial. Se reconocen varias actividades que se localizan a lo largo y ancho del área de influencia. Las actividades son las siguientes: Manejo de los residuos sólidos por parte de la comunidad (ver Fotografía 3.2.4-31), Manejo de los residuos líquidos por parte de la comunidad (ver Fotografía 3.2.4-32), Aprovechamiento del recurso hídrico superficial (ver Fotografía 3.2.4-33), Actividades ganaderas (ver Fotografía 3.2.4-34), Actividades pecuarias especies menores (Porcinas, Caprinas, Aviar) (ver Fotografía 3.2.4-35), Actividades Agrícolas (ver Fotografía 3.2.4-36) y procesos de ocupación informal de predios (ver Fotografía 3.2.4-37).

Fotografía 3.2.4-31 Manejo de los residuos sólidos por parte de la comunidad en arroyo Mendoza

*Coordenadas de toma: 4779903 E, 2727875 N Fuente: SGS Colombia, 2021

Versión No. 0. 12.2021

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

Fotografía 3.2.4-32 Manejo de los residuos líquidos por parte de la comunidad en las vías en a Aguada de Pablo

*Coordenadas de toma: 4780427 E, 2721277 N Fuente: SGS Colombia, 2021

Fotografía 3.2.4-33 Aprovechamiento del recurso hídrico superficial arroyo Regolledo 1

*Coordenadas de toma: 4780875 E, 2722781 N Fuente: SGS Colombia, 2021

Versión No. 0. 12.2021

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

Fotografía 3.2.4-34 Actividades ganaderas en la cuenca del arroyo Manga

*Coordenadas de toma: 4796168 E, 2724153 N Fuente: SGS Colombia, 2021

Fotografía 3.2.4-35 Contaminación por actividades pecuarias especies menores (porcinas) en el arroyo Javara

*Coordenadas de toma: 4786145 E, 2725687 N Fuente: SGS Colombia, 2021

Versión No. 0. 12.2021

CAPITULO 3. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA DEL PROYECTO

Fotografía 3.2.4-36 Actividad agrícola en la unidad hidrográfica afluente NN2 al embalse El Guájaro

* Coordenadas de toma: 4782474 E, 2722550 N Fuente: SGS Colombia, 2021

Fotografía 3.2.4-37 Procesos de ocupación informal de predios en la cuenca del arroyo Guayepo

*Coordenadas de toma: 4790097 E, 2731693 N Fuente: SGS Colombia, 2021